ATTACHMENT C

LOWER NEPONSET RIVER PCBS
SAMPLE DESCRIPTION AND RATIONALE TABLES
Samples Collected from 13 to 17 November 2017 and 4 to 6 September 2018

Table 1 START Sediment/Source Sample Descriptions (November 2017)
Table 2 START Aqueous Quality Assurance/Quality Control Samples
Table 3 START Performance Evaluation Samples
Table 4 START Sediment/Source Sample Descriptions (September 2018)
<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (inches)</th>
<th>DAS Sample No./CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-01</td>
<td>Grab sediment samples collected using a Vibe-core Mini sampler, from a fluvial deposition and emergent wetland area along the northern bank of the Neponset River, upstream of the Baker Dam. The source sample was collected from within the surface water impoundment area, approximately 200 feet upstream of the Baker Dam to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations. 42.27072 North Latitude 71.069635 West Longitude</td>
<td>---</td>
<td>10-20</td>
<td>D35204/A41G7</td>
<td>11/15/2017 9:00</td>
<td>PCBs</td>
<td>Sample was collected using a Vibe-core Mini on 11/14/17 at 1130 hours in 4' of water. Core length 60", recovery 20". Material described as dark gray silt and very fine sand, trace roots and clay. Specific conductance (μS/cm) = 354; Temp. (°C) = 3.86; Turbidity (NTU) = 1.95; pH = 7.00; DO (mg/L) = 7.94; PID = 0, water had a slight sheen.</td>
</tr>
<tr>
<td>SD-02</td>
<td>Grab sediment samples collected using a Vibe-core Mini sampler, from a fluvial deposition area, adjacent an emergent wetland area. The sample is collected along the southern bank of the Neponset River, within the surface water impoundment area, approximately 60 feet upstream of the Baker Dam, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations. 42.270543 North Latitude 71.069898 West Longitude</td>
<td>---</td>
<td>8-16</td>
<td>D35205/A41G8</td>
<td>11/15/2017 10:15</td>
<td>PCBs</td>
<td>Sample was collected using a Vibe-core Mini on 11/14/17 at 0916 hours in 8-10' of water. Core length 60", recovery 16". Material described as dark gray silt, little coarse gravel, trace roots, and twigs. Specific conductance (μS/cm) = 344; Temp. (°C) = 3.83; Turbidity (NTU) = 4.52; pH = 7.03; DO (mg/L) = 14.01; PID = 0, water had a slight sheen.</td>
</tr>
<tr>
<td>SD-03</td>
<td>Grab sediment samples collected using a percussion corer sampler, from a fluvial deposition area along the southern bank of the Neponset River, upstream of the Baker Dam. The source sample collected from within the surface water impoundment area, approximately 150 feet upstream of the Baker Dam, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations. 42.270495 North Latitude 71.069288 West Longitude</td>
<td>---</td>
<td>11-22</td>
<td>D35208/A41H1</td>
<td>11/15/2017 9:15</td>
<td>PCBs</td>
<td>Sample was collected using a percussion corer on 11/14/17 at 0130 hours in 5' of water. Core length 48", recovery 22". Material described as gray silt and very fine sand, trace roots and clay, slight petroleum odor. Specific conductance (μS/cm) = 348; Temp. (°C) = 3.61; Turbidity (NTU) = NR; pH = 7.03; DO (mg/L) = 8.63; PID = 0.</td>
</tr>
<tr>
<td>Station Location</td>
<td>Location Description/Rationale</td>
<td>Sub-location</td>
<td>Depth* (inches)</td>
<td>DAS Sample No./ CLP Sample No.</td>
<td>Date and Time (hours)</td>
<td>Analysis</td>
<td>Sample Description</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| SD-04 | Grab sediment samples collected using a percussion corer sampler, from a fluvial deposition area along the northern bank of the Neponset River, within an emergent wetland area upstream of the Baker Dam. The source sample collected from within the surface water impoundment area, approximately 300 feet upstream of the Baker Dam, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations, as well as document ecological impacts. 42.270708 North Latitude 71.069901 West Longitude | --- | 12-24 | D35209/A41H2 | 11/15/2017 9:30 | PCBs Percent Solids TOC Grain Size | Sample was collected using a percussion corer on 11/14/17 at 1116 hours in 6' of water. Core length 48", recovery 24". Material described as dark gray silt and very fine sand, trace roots, clay and coarse gravel, slight petroleum odor. Specific conductance (μS/cm) = 350; Temp. (°C) = 3.91; Turbidity (NTU) = NR; pH = 6.92; DO (mg/L) = 15.48; PID = 0.
<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (inches)</th>
<th>DAS Sample No./CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-05 Grab sediment samples collected using a hand auger, from an upstream area located within the Pine Tree Brook channel. Sample collected upstream of the Neponset Riverwalk Trail and the Railroad Bridge and downstream of the Eliot Street Bridge, to determine the presence of any Aroclor substances within this tributary to the Lower Neponset River and to document upstream reference/background levels for comparison purposes. 42.269934 North Latitude 71.072812 West Longitude</td>
<td>A</td>
<td>6-12</td>
<td></td>
<td></td>
<td>11/13/2017 10:52</td>
<td>PCBS</td>
<td>Sample was collected using a hand auger. Material described as brown very coarse-to-medium sand and coarse-to-fine gravel (rocks and glass fragments), trace silt, wet. PID = 0. Sample interval not collected for analysis.</td>
</tr>
<tr>
<td>SD-06 Grab sediment samples collected using a hand auger, from a fluvial deposition area on the downstream side of the most-downstream island adjacent to a wetland area within the braided channel segment of the Neponset River, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations, as well as document ecological impacts. 42.270231 North Latitude 71.075337 West Longitude</td>
<td>A</td>
<td>6-12</td>
<td></td>
<td></td>
<td>11/13/2017 11:35</td>
<td>PCBs</td>
<td>Sample was collected using a hand auger. Material described as brown very coarse-to-fine gravel and very coarse-to-medium sand, trace silt, wet. Specific conductance (μS/cm) = 159.4 Temp. (°C) = 5.9; Turbidity (NTU) = 1.39; pH = 6.44; DO (mg/L)= NR; PID = 0.</td>
</tr>
<tr>
<td></td>
<td>---</td>
<td>12-24</td>
<td>D35210/A41H3</td>
<td>11/13/2017 11:08</td>
<td>PCBs</td>
<td>Sample was collected using a hand auger. Material described as brown coarse-to-fine gravel and very coarse-to-medium sand, trace silt, wet. PID = 0. Sample interval not collected for analysis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>---</td>
<td>12-24</td>
<td>D35211/A41H4</td>
<td>11/13/2017 11:45</td>
<td>PCBs</td>
<td>Sample was collected using a hand auger. Material described as dark brown very fine sand, some leaves and twigs, wet, spongy. PID = 0. Sample interval not collected for analysis.</td>
<td></td>
</tr>
</tbody>
</table>
TABLE C-1

SEDIMENT/SOURCE SAMPLES

LOWER NEPONSET RIVER PCBs
BOSTON/MILTON, MASSACHUSETTS
13 THROUGH 17 NOVEMBER 2017

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sample Depth* (inches)</th>
<th>DAS Sample No./CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-07</td>
<td>Grab sediment samples collected using a hand auger from a fluvial deposition area along the northeastern side of a large island covered with wetland vegetation. Sample collected from adjacent to the main river channel on the downstream side of the island within the braided channel segment of the Neponset River, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations, as well as document ecological impacts. 42.270299 North Latitude 71.077002 West Longitude</td>
<td>---</td>
<td>6-24</td>
<td>D35212/A41H5</td>
<td>11/13/2017 12:00</td>
<td>PCBs Percent Solids TOC Grain Size</td>
</tr>
<tr>
<td>SD-08</td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition area along the northwestern side of a large island covered with wetland vegetation. Sample collected from adjacent to the main river channel on the upstream side of the island within the braided channel segment of the Neponset River, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations, as well as document ecological impacts. 42.270934 North Latitude 71.07754 West Longitude</td>
<td>---</td>
<td>0-6</td>
<td>---</td>
<td>11/13/2017 12:12</td>
<td>---</td>
</tr>
<tr>
<td>SD-08</td>
<td></td>
<td>A</td>
<td>6-30</td>
<td>D35275/A41P0</td>
<td>11/13/2017 12:15</td>
<td>PCBs Percent Solids TOC Grain Size</td>
</tr>
<tr>
<td>SD-08</td>
<td></td>
<td>---</td>
<td>30-52</td>
<td>D35213/A41H6</td>
<td>11/13/2017 12:46</td>
<td>PCBs Percent Solids TOC Grain Size</td>
</tr>
</tbody>
</table>
TABLE C-1

SEDIMENT/SOURCE SAMPLES
LOWER NEPONSET RIVER PCBS
BOSTON/MILTON, MASSACHUSETTS
13 THROUGH 17 NOVEMBER 2017

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (inches)</th>
<th>DAS Sample No./CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-09</td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition within an emergent wetland area along the west-southwestern side of a large island covered with wetland vegetation. Sample collected from within a sub-channel leading to the adjacent to the main river channel on the upstream side of the island within the braided channel segment of the Neponset River, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations, as well as document ecological impacts. 42.269764 North Latitude 71.079771 West Longitude</td>
<td>---</td>
<td>0-12</td>
<td>---</td>
<td>11/13/2017 14:35</td>
<td>---</td>
<td>Sample was collected using a hand auger. Sample interval not collected for analysis nor classified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>---</td>
<td>12-24</td>
<td>---</td>
<td>11/13/2017 14:43</td>
<td>---</td>
<td>Sample was collected using a hand auger. Sample interval not collected for analysis nor classified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>---</td>
<td>24-36</td>
<td>D35214/A41H7</td>
<td>11/13/2017 15:15</td>
<td>PCBs</td>
<td>Sample was collected using a hand auger in 14' of water. Material described as dark gray fine sand, little coarse-to-fine gravel. Specific conductance (μS/cm) = 690; Temp. (°C) = 4.8; Turbidity (NTU) = NR; pH = 6.35; DO = NR; PID = 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>---</td>
<td>6-18</td>
<td>---</td>
<td>11/14/2017 8:55</td>
<td>---</td>
<td>Sample was collected using a hand auger. Sample interval not collected for analysis nor classified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>---</td>
<td>18-30</td>
<td>---</td>
<td>11/14/2017 8:59</td>
<td>---</td>
<td>Sample was collected using a hand auger. Sample interval not collected for analysis nor classified.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>---</td>
<td>30-38</td>
<td>D35215/A41H8</td>
<td>11/14/2017 9:04</td>
<td>PCBs</td>
<td>Sample was collected using a hand auger in 12' of water. Material described as dark gray silt, little clay, trace fine gravel and roots, wet, oly odor. Specific conductance (μS/cm) = 630; Temp. (°C) = 4.88; Turbidity (NTU) = 0; pH = 5.745; DO = 12.82; PID = 0.</td>
</tr>
</tbody>
</table>
TABLE C-1

SEDIMENT/SOURCE SAMPLES
LOWER NEPONSET RIVER PCBS
BOSTON/MILTON, MASSACHUSETTS
13 THROUGH 17 NOVEMBER 2017

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (inches)</th>
<th>DAS Sample No./CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATRIX: Sediment/Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-11</td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition and emergent wetland area. This sample location is along the north-eastern portion of a large island covered with wetland vegetation. Sample collected from within a wetland area, surrounded by cattails (Bulrush) vegetation, along the north side of the island, on the downstream side of the island within the braided channel segment of the Lower Neponset River, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations, as well as document ecological impacts. 42.269427 North Latitude 71.080812 West Longitude</td>
<td>---</td>
<td>6-24</td>
<td>D35216/A41H9</td>
<td>11/14/2017 9:35</td>
<td>PCBs Percent Solids TOC Grain Size</td>
<td>Sample was collected using a hand auger in <4" of water. Material described as light gray to brown silt and very fine sand, trace clay and roots, slight petroleum odor, wet. Slight chemical-like odor smelling like naphthalene (mothball odor). PID = 0.</td>
</tr>
<tr>
<td>SD-12</td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition and emergent wetland area along the north-eastern edge of the most-upstream island within the braided channel segment of the Lower Neponset River, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations, as well as document ecological impacts. 42.269427 North Latitude 71.080812 West Longitude</td>
<td>A</td>
<td>6-18</td>
<td>D35276/A41P1</td>
<td>11/14/2017 10:05</td>
<td>PCBs Percent Solids TOC Grain Size</td>
<td>Sample was collected using a hand auger in <12" of water. Material described as dark gray and brown silt and very fine sand, trace roots, wet, oily/petroleum odor. PID = NR.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>---</td>
<td>18-30</td>
<td>D35219/A41J2</td>
<td>11/14/2017 10:10</td>
<td>PCBs Percent Solids TOC Grain Size</td>
<td>Sample was collected using a hand auger in <12" of water. Material described as dark gray and brown silt, trace clay and coarse gravel and roots, oily/petroleum odor. PID = 0.</td>
</tr>
<tr>
<td>Station Location</td>
<td>Location Description/Rationale</td>
<td>Sub-location</td>
<td>Sample Depth* (inches)</td>
<td>DAS Sample No./CLP Sample No.</td>
<td>Date and Time (hours)</td>
<td>Analysis</td>
<td>Sample Description</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>--------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>SD-13</td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition area along the north-western edge of the most-upstream island within the braided channel segment of the Lower Neponset River. The island is covered by wetland vegetation and debris. Sample collected from within an emergent wetland area, along the north side of the island, on the upstream side of the island within the braided channel segment of the Lower Neponset River. Sample was collected using a hand auger in <1" of water. Sample interval not sampled for analysis nor classified.</td>
<td>---</td>
<td>6-18</td>
<td>---</td>
<td>11/14/2017 10:29</td>
<td>---</td>
<td>Sample was collected using a hand auger in <1" of water. Sample interval not sampled for analysis nor classified.</td>
</tr>
</tbody>
</table>

Matrix: Sediment/Source

42.268506 North Latitude
71.083752 West Longitude

13 THROUGH 17 NOVEMBER 2017
<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (inches)</th>
<th>DAS Sample No./CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Grab sediment samples collected using a Vibe-core Mini sampler, from a fluvial deposition area along the northern shoreline bank of the Neponset River, approximately 65 feet upstream of the Tileston & Hollingsworth Dam. The sample was collected within an emergent wetland area in the surface water impoundment of the Da, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations. 42.26081625 North Latitude 71.1106296 West Longitude</td>
<td>A</td>
<td>0-12</td>
<td>D35223/A41J6</td>
<td>11/15/2017 14:25</td>
<td>PCBs</td>
<td>Sample collect using a Vibe-core Mini on 11/15/17 at 0950 hours in 6" of water. Core length 60", recovery 38%. Material described as follows: 0-12" - Dark brown silt, trace clay and roots, slight petroleum odor. 12-25" - Dark brown and gray silt and very fine sand, trace clay and roots, slight petroleum odor. 25-38" - Dark gray silt, little clay, trace very fine sand and roots, slight petroleum odor, wet. Specific conductance (μS/cm) = 605; Temp. (°C) = 5.47; Turbidity (NTU) = 0; pH = 5.9; DO (mg/L) = 8.07; PID = 0; slight sheen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>12-25</td>
<td>D35222/A41J5</td>
<td>11/15/2017 14:15</td>
<td>PCBs</td>
<td>Sample collect using a Vibe-core Mini on 11/15/17 at 0950 hours in 6" of water. Core length 60", recovery 38%. Material described as follows: 0-12" - Dark brown silt, trace clay and roots, slight petroleum odor. 12-25" - Dark brown and gray silt and very fine sand, trace clay and roots, slight petroleum odor. 25-38" - Dark gray silt, little clay, trace very fine sand and roots, slight petroleum odor, wet. Specific conductance (μS/cm) = 605; Temp. (°C) = 5.47; Turbidity (NTU) = 0; pH = 5.9; DO (mg/L) = 8.07; PID = 0; slight sheen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>---</td>
<td>25-38</td>
<td>D35221/A41J4</td>
<td>11/15/2017 14:10</td>
<td>PCBs</td>
<td>Sample collect using a Vibe-core Mini on 11/15/17 at 0950 hours in 6" of water. Core length 60", recovery 38%. Material described as follows: 0-12" - Dark brown silt, trace clay and roots, slight petroleum odor. 12-25" - Dark brown and gray silt and very fine sand, trace clay and roots, slight petroleum odor. 25-38" - Dark gray silt, little clay, trace very fine sand and roots, slight petroleum odor, wet. Specific conductance (μS/cm) = 605; Temp. (°C) = 5.47; Turbidity (NTU) = 0; pH = 5.9; DO (mg/L) = 8.07; PID = 0; slight sheen.</td>
</tr>
<tr>
<td>SD-15</td>
<td>Grab sediment samples collected using a Vibe-core Mini sampler, from a fluvial deposition area approximately 75 feet upstream Tileston & Hollingsworth Dam surface water impoundment, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations. 42.2611063 North Latitude 71.1108382 West Longitude</td>
<td>---</td>
<td>12-24</td>
<td>D35224/A41J7</td>
<td>11/15/2017 14:55</td>
<td>PCBs</td>
<td>Sample collected using a Vibe-core Mini on 11/15/17 at 1020 hours in 4" of water. Core length 60", recovery 24%. Material described as dark gray silt, little clay, trace very fine sand and wood, slight petroleum odor. Specific conductance (μS/cm) = NR; Temp. (°C) = 5.59; Turbidity (NTU) = 0; pH = 5.67; DO (mg/L) = 11.20; PID = 0.</td>
</tr>
</tbody>
</table>

*Depth measurements are approximate and may vary slightly due to natural variations in the sediment layer.
<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (inches)</th>
<th>DAS Sample No./CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-16</td>
<td>Grab sediment samples collected using a percussion corer sampler, from a fluvial deposition area approximately 10 feet off the northern bank of the Neponset River, within an emergent wetland area in the Tileston & Hollingsworth Dam surface water impoundment. The sample was collected approximately 350 feet upstream of the Dam, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations, as well as document ecological impacts. 42.2607710 North Latitude 71.1116432 West Longitude</td>
<td>---</td>
<td>0-15</td>
<td>D35225/A41J8</td>
<td>11/15/2017 15:10</td>
<td>PCBs</td>
<td>Percent Solids</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grain Size</td>
</tr>
<tr>
<td></td>
<td>Sample collected using a percussion corer on 11/15/17 at 1130 hours in 10’ of water. Core length 48”, recovery 15”. Material described as dark brown silt, some clay, trace roots, slight petroleum odor. Specific conductance (μS/cm) = 609; Temp. (°C) = 5.78; Turbidity (NTU) = 0; pH = 5.888; DO (mg/L) = 16.21; PID = 0.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-17</td>
<td>Grab sediment samples collected using a Vibe-core Mini sampler, from a fluvial deposition area along the southern shoreline of the Neponset River, within an emergent wetland area upstream of the Tileston & Hollingsworth Dam. The sample was collected approximately 200 feet upstream Tileston & Hollingsworth Dam, within an emergent wetland area in the surface water impoundment of the dam and downstream of the confluence of Mother Brook and the Neponset River, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations, as well as document ecological impacts. 42.2607566 North Latitude 71.1109988 West Longitude</td>
<td>---</td>
<td>0-17</td>
<td>D35225/A41J9</td>
<td>11/15/2017 14:40</td>
<td>PCBs</td>
<td>Percent Solids</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grain Size</td>
</tr>
<tr>
<td></td>
<td>Sample collected using a Vibe-core Mini on 11/15/17 at 1010 hours in 16-18” of water. Core length 60”, recovery 17”. Material described as dark gray fine sand and silt, trace roots and leaves. Specific conductance (μS/cm) = 620; Temp. (°C) = 5.38; Turbidity (NTU) = 6.0; pH = 5.64; DO (mg/L) = 10.34; PID = 0.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station Location</td>
<td>Location Description/Rationale</td>
<td>Sub-location</td>
<td>Sample Depth* (inches)</td>
<td>DAS Sample No./CLP Sample No.</td>
<td>Date and Time (hours)</td>
<td>Analysis</td>
<td>Sample Description</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>MATRIX: Sediment/Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-18</td>
<td>Grab sediment samples collected using a percussion corer sampler, from from a fluvial deposition area along the northern bank of the Neponset River, approximately 450 to 500 feet upstream of the Tileston & Hollingsworth Dam. Sample SD-18 collected from in an emergent wetland area within the surface water impoundment area of the dam and downstream of the confluence of Mother Brook and the Neponset River, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations. 42.2603297 North Latitude 71.1120111 West Longitude</td>
<td></td>
<td>13.5-27</td>
<td>D35226/A41K0</td>
<td>11/13/2017 15:25</td>
<td>PCBs</td>
<td>Sample collected using a percussion corer on 11/15/17 at 1230 hours in 15' of water. Core length 48", recovery 27". Material described as gray silt, little very fine sand and clay, slight petroleum odor. Specific conductance (µS/cm) = 606; Temp. (°C) = 5.66; Turbidity (NTU) = 0; pH = 5.9; DO (mg/L) = 10.14; PID = 0.</td>
</tr>
<tr>
<td>SD-19</td>
<td>Grab sediment samples collected using a hand auger, from from a fluvial deposition area downstream of the confluence of Mother Brook and the Neponset River, adjacent to the downstream side of the Dana Street Bridge pier (pillar) and cutwater. A cutwater is the footer designed to ease the flow of the water around the bridge, reducing the damage caused by erosion or collisions with flood-borne debris and downstream of the confluence of Mother Brook and the Neponset River, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations. 42.251926 North Latitude 71.1220111 West Longitude</td>
<td></td>
<td>6-22</td>
<td>D35227/A41K1</td>
<td>11/15/2017 10:55</td>
<td>PCBs</td>
<td>Sample collected using a hand auger in 34" of water. Material described as dark gray fine sand and silt, some coarse gravel, little organic material (leaves, twigs). Specific conductance (µS/cm) = 311; Temp. (°C) = 4.47; Turbidity (NTU) = 0; pH = 7.07; DO (mg/L) = 15.07; PID = 0.</td>
</tr>
<tr>
<td>Station Location</td>
<td>Location Description/Rationale</td>
<td>Sub-location</td>
<td>Sample Depth* (inches)</td>
<td>DAS Sample No./CLP Sample No.</td>
<td>Date and Time (hours)</td>
<td>Analysis</td>
<td>Sample Description</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>SD-20</td>
<td>Grab sediment samples collected using a Piston Corer, Macro Core, or Vibe-core Mini sampler, from a location along Mother Brook immediately upstream of the confluence of Mother Brook and the Neponset River, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations.</td>
<td>A</td>
<td>0-20</td>
<td>D35280/A41Q3</td>
<td>11/15/2017 10:53</td>
<td>PCBs</td>
<td>Percent Solids</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOC</td>
<td>Grain Size</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>0-20</td>
<td>D35280/A41Q3</td>
<td>11/15/2017 10:53</td>
<td>PCBs</td>
<td>Percent Solids</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOC</td>
<td>Grain Size</td>
</tr>
<tr>
<td></td>
<td></td>
<td>---</td>
<td>20-40</td>
<td>D35230/A41K3</td>
<td>11/15/2017 11:00</td>
<td>PCBs</td>
<td>Percent Solids</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOC</td>
<td>Grain Size</td>
</tr>
</tbody>
</table>

Sample location not collected due to river bottom being armored.
TABLE C-1

SEDIMENT/SOURCE SAMPLES
LOWER NEPONSET RIVER PCBS
BOSTON/MILTON, MASSACHUSETTS
13 THROUGH 17 NOVEMBER 2017

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (inches)</th>
<th>DAS Sample No./CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
</table>
| **SD-22** | Grab sediment samples collected using a hand auger, from a fluvial deposition/emergent wetland area approximately 500 feet downstream of the Neponset River Canoe Launch at Martini Playground/Shell Park and approximately 150 downstream of the MBTA railroad bridge over the Neponset River. The depositional area is located along the eastern bank of the Neponset River, west of the MBTA Railroad tracks and northeast of a Hot Mix Asphalt/Sand Batching operation, located at 1586 Hyde Park Avenue, to determine the presence of any Aroclor substances in the Upper Neponset River and to document upstream reference/background levels for comparison purposes.
42.245364 North Latitude
71.127638 West Longitude | A | 6-24 | D35283/A41Q6 | 11/15/2017 14:17 | PCBs, Percent Solids, TOC, Grain Size | Sample collected using a hand auger in 8" of water. Material described as brown fine-to-medium sand, trace silt, roots and leaves. Specific conductance (μS/cm) = 330; Temp. (°C) = 4.72; Turbidity (NTU) = NR; pH = 7.11; DO (mg/L) = 8.48; PID = 0. |
<p>| | --- | 24-48 | D35231/A41K4 | 11/15/2017 14:23 | PCBs, Percent Solids, TOC, Grain Size | Sample collected using a hand auger in 8" of water. Material described as dark gray very fine-to-fine sand and silt, trace twigs. PID = 0. |</p>
<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (inches)</th>
<th>DAS Sample No./CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATRIX: Sediment/Source</td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition/emergent wetland area approximately 550 feet upstream of the Neponset River Canoe Launch at Martini Playground/Shell Park. The depositional area is located along the eastern bank of the Lower Neponset River, west of the Truman Park Plaza (1025 Truman Parkway)/behind the Stop & Shop building parking lot, and north of the MTBA Railroad Operations Readville Maintenance Facility/Railway Yard (located along Walcott Court) and a scrap recycling and transfer station (also located along Walcott Court), to determine the presence and concentration levels of any Aroclor substances in the Upper Neponset River and to document upstream ecological sediment reference/background levels for comparison purposes. 42.242709 North Latitude 71.127929 West Longitude</td>
<td>A</td>
<td>12-16</td>
<td>D35282/A41Q5</td>
<td>11/15/2017 13:40</td>
<td>PCBs Percent Solids TOC Grain Size</td>
<td>Sample collected using a hand auger in 8” of water. Material described as brown very fine sand, little silt, trace roots. Specific conductance (μS/cm) = 330; Temp. (°C) = 4.58; Turbidity (NTU) = NR; pH = 7.16; DO (mg/L) = 11.02; PID = 0.</td>
</tr>
<tr>
<td></td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition area approximately 120 feet upstream of Paul’s Bridge/Neponset Valley Parkway Bridge. The depositional area is located along the southern/eastern bank of the Lower Neponset River, within a PSR/PFO wetland area in the Fowl Meadow wetland area, to determine the presence of any Aroclor substances in the Upper Neponset River and to document upstream reference/background levels for comparison purposes. 42.234167 North Latitude 71.123047 West Longitude</td>
<td>B</td>
<td>16-30</td>
<td>D35281/A41Q4</td>
<td>11/15/2017 13:48</td>
<td>PCBs Percent Solids TOC Grain Size</td>
<td>Sample collected using a hand auger in 8” of water. Material described as dark brown fine sand, little silt, trace roots. PID = 0.</td>
</tr>
<tr>
<td></td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition area approximately 120 feet upstream of Paul’s Bridge/Neponset Valley Parkway Bridge. The depositional area is located along the southern/eastern bank of the Lower Neponset River, within a PSR/PFO wetland area in the Fowl Meadow wetland area, to determine the presence of any Aroclor substances in the Upper Neponset River and to document upstream reference/background levels for comparison purposes. 42.234167 North Latitude 71.123047 West Longitude</td>
<td>---</td>
<td>30-48</td>
<td>D35232/A41K5</td>
<td>11/15/2017 13:51</td>
<td>PCBs Percent Solids TOC Grain Size</td>
<td>Sample collected using a hand auger in 8” of water. Material described as dark gray silt, little very fine-to-fine sand, trace clay, slight oily/petroleum odor. PID = 0.</td>
</tr>
<tr>
<td></td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition area approximately 120 feet upstream of Paul’s Bridge/Neponset Valley Parkway Bridge. The depositional area is located along the southern/eastern bank of the Lower Neponset River, within a PSR/PFO wetland area in the Fowl Meadow wetland area, to determine the presence of any Aroclor substances in the Upper Neponset River and to document upstream reference/background levels for comparison purposes. 42.234167 North Latitude 71.123047 West Longitude</td>
<td>---</td>
<td>0-18</td>
<td>D35233/A41K6</td>
<td>11/16/2017 8:15</td>
<td>PCBs Percent Solids TOC Grain Size</td>
<td>Sample collected using a hand auger in 14” of water. Material described as dark brown medium-to-very coarse sand, trace coarse-to-fine gravel, silt, and leaves. Specific conductance (μS/cm) = 606; Temp. (°C) = 5.71; Turbidity (NTU) = 0; pH = 6.12; DO (mg/L) = 15.65; PID = 0.</td>
</tr>
<tr>
<td></td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition area approximately 120 feet upstream of Paul’s Bridge/Neponset Valley Parkway Bridge. The depositional area is located along the southern/eastern bank of the Lower Neponset River, within a PSR/PFO wetland area in the Fowl Meadow wetland area, to determine the presence of any Aroclor substances in the Upper Neponset River and to document upstream reference/background levels for comparison purposes. 42.234167 North Latitude 71.123047 West Longitude</td>
<td>B</td>
<td>D35234/A41K7</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>Interval not sampled.</td>
</tr>
<tr>
<td></td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition area approximately 120 feet upstream of Paul’s Bridge/Neponset Valley Parkway Bridge. The depositional area is located along the southern/eastern bank of the Lower Neponset River, within a PSR/PFO wetland area in the Fowl Meadow wetland area, to determine the presence of any Aroclor substances in the Upper Neponset River and to document upstream reference/background levels for comparison purposes. 42.234167 North Latitude 71.123047 West Longitude</td>
<td>A</td>
<td>D35235/A41K8</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>Interval not sampled.</td>
</tr>
<tr>
<td>Station Location</td>
<td>Location Description/Rationale</td>
<td>Sub-location</td>
<td>Sample Depth* (inches)</td>
<td>DAS Sample No./CLP Sample No.</td>
<td>Date and Time (hours)</td>
<td>Analysis</td>
<td>Sample Description</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>Matrix: Sediment/Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-25</td>
<td>Grab sediment samples collected using a Vibe-core Mini sampler, from a fluvial deposition area approximately 0.3 miles (1,600 feet) upstream of Paul’s Bridge (Neponset Valley Parkway Bridge) and approximately 0.3 miles downstream of sediment sample location SD-26. The depositional area is located along the southern/eastern bank of the Lower Neponset River, within a PEM-PSS wetland area within the Fowl Meadow wetland area, to determine the presence and concentration levels of any Aroclor substances in the Upper Neponset River and to document upstream ecological sediment reference/background levels for comparison purposes.</td>
<td>---</td>
<td>19-38</td>
<td>D35236/A41K9</td>
<td>11/16/2017 13:00</td>
<td>PCBs Percent Solids TOC Grain Size</td>
<td>Sample collected using a Vibe-core Mini on 11/16/17 at 1113 hours in 8-12" of water. Core length 48", recovery 38%. Material described as greenish-gray fine-to-very fine sand, trace silt, clay, and roots. Specific conductance (μS/cm) = 602; Temp. (°C) = 5.91; Turbidity (NTU) = 6.4; pH = 6.03; DO (mg/L) = 13.89; PID = 0.</td>
</tr>
<tr>
<td>Station Location</td>
<td>Location Description/Rationale</td>
<td>Sub-location</td>
<td>Sample Depth (inches)</td>
<td>DAS Sample No./CLP Sample No.</td>
<td>Date and Time (hours)</td>
<td>Analysis</td>
<td>Sample Description</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>------------------------------</td>
<td>------------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>SD-26</td>
<td>Grab sediment samples collected using a Vibe-core Mini sampler, from a fluvial deposition area approximately 0.6 miles (3,200 feet) upstream of Paul’s Bridge/Neponset Valley Parkway Bridge. The SD-26 sample location is a depositional area is located along the southern/eastern bank of the Lower Neponset River, within a PEM-PSS wetland area within the Fowl Meadow wetland, to determine the presence and concentration levels of any Aroclor substances in the Upper Neponset River and to document upstream ecological sediment reference/background levels for comparison purposes. 42.228704 North Latitude 71.129871 West Longitude</td>
<td>B</td>
<td>15-30</td>
<td>D35285/A41Q8</td>
<td>11/16/2017 12:40</td>
<td>PCBs</td>
<td>Percent Solids</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOC</td>
<td>Grain Size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-15</td>
<td>D35284/A41Q7</td>
<td>11/16/2017 12:35</td>
<td>PCBs</td>
<td>Percent Solids</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOC</td>
<td>Grain Size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-9</td>
<td>D35240/A41L3</td>
<td>11/16/2017 9:50</td>
<td>PCBs</td>
<td>Percent Solids</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOC</td>
<td>Grain Size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-15</td>
<td>D35237/A41L0</td>
<td>11/16/2017 12:45</td>
<td>PCBs</td>
<td>Percent Solids</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOC</td>
<td>Grain Size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-9</td>
<td>D35238/A41L1</td>
<td>11/16/2017 10:00</td>
<td>PCBs</td>
<td>Percent Solids</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOC</td>
<td>Grain Size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample collected using a Vibe-core Mini on 11/16/17 at 0950 hours in 10" of water. Core length 45", recovery 45%. Material described as follows: 0-15" - Dark gray silt, some very fine sand, trace clay and roots. 15-30" - Dark gray silt, little clay, trace very fine sand and twigs, slight petroleum odor. 30-45" - Brownish-gray very fine sand, some silt, trace clay, slight petroleum odor. Specific conductance (μS/cm) = 605; Temp. (°C) = 5.60; Turbidity (NTU) = 14.2; pH = 6.04; DO (mg/L) = 12.83; PID = 0.

Two co-located sediment sample cores collected using a percussion corer on 11/15/17 at 1456 hours in 6-7" of water. Core length 48", recovery 18%. Material described as follows: 0-9" - Dark gray-ish brown silt, some clay, trace roots. 9-18" - Dark gray silt, some clay, trace roots. Specific conductance (μS/cm) = 562; Temp. (°C) = 6.41; Turbidity (NTU) = 6.8; pH = 5.98; DO (mg/L) = 12.84; PID = 0.
TABLE C-1

SEDIMENT/SOURCE SAMPLES
LOWER NEPONSET RIVER PCBS
BOSTON/MILTON, MASSACHUSETTS
13 THROUGH 17 NOVEMBER 2017

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (inches)</th>
<th>DAS Sample No./CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
</table>
| **SD-28** | Grab sediment samples collected using a percussion corer sampler, from a fluvial deposition area along the northern bank of Mother Brook, within an emergent wetland area upstream of the Westinghouse Dam and the River Street Bridge. The sample collected from Mother Brook, approximately 2,100 feet upstream of the Westinghouse Dam, to determine the presence of any Aroclor substances in Mother Brook and to document upstream reference/background levels for comparison purposes.
42.2445303 North Latitude
71.1407906 West Longitude | 0-11 | 11-22 | D35241/A41L4 | 11/16/2017 10:15 | 11/16/2017 10:15 | PCBs
Percent Solids
TOC
Grain Size | Sample collected using percussion corer.
Sample interval not collected for analysis nor classified.
Specific conductance (μS/cm) = 569 Temp. (°C) = 5.72; Turbidity (NTU) = 9.0; pH = 5.97; DO (mg/L) = 11.57; PID = 0. |
| **SD-29** | Grab sediment samples collected using a percussion corer sampler, from a fluvial deposition area along the northern bank of Mother Brook, within an emergent wetland area approximately 2,000 feet upstream of the Westinghouse Dam, to determine the presence and concentration levels of any Aroclor substances in Mother Brook and to document upstream reference/background levels for comparison purposes.
42.244478 North Latitude
71.139812 West Longitude | 0-8.5 | 8.5-17 | D35242/A41L5 | 11/16/2017 10:50 | 11/16/2017 10:50 | PCBs
Percent Solids
TOC
Grain Size | Sample collected using percussion corer.
Sample interval not collected for analysis nor classified.
Specific conductance (μS/cm) = 293; Temp. (°C) = 4.52; Turbidity (NTU) = 11.22; pH = 7.188; DO (mg/L) = NR; PID = 0. |
TABLE C-1

SEDIMENT/SOURCE SAMPLES
LOWER NEPONSET RIVER PCBS
BOSTON/MILTON, MASSACHUSETTS
13 THROUGH 17 NOVEMBER 2017

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (inches)</th>
<th>DAS Sample No./CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATRIX: Sediment/Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-30</td>
<td>Grab sediment samples collected using a percussion corer sampler, from a fluvial deposition area, along the northern bank of Mother Brook, within an emergent wetland area approximately 3,000 feet upstream of the Westinghouse Dam, to determine the presence and concentration levels of any Aroclor substances in Mother Brook and to document upstream ecological sediment reference/background levels for comparison purposes.</td>
<td>---</td>
<td>11-22</td>
<td>D35243/A41L6</td>
<td>11/16/2015 11:00</td>
<td>PCBs, Percent Solids, TOC, Grain Size</td>
<td>Sample collected using a percussion corer on 11/16/17 at 0901 hours in 3" of water. Core length 48", recovery 22". Material described as brown very fine sand, trace coarse gravel, wood debris, and silt. No water quality parameters recorded, PID = 0.</td>
</tr>
<tr>
<td>SD-31</td>
<td>Grab sediment samples collected using a Piston Corer, Macro Core, or Vibe-core Mini sampler, from a wetland area within Mother Brook, located adjacent/upstream of the Fairview Cemetery (45 Fairview Ave., Boston MA) and upstream of the Westinghouse Dam area, to determine the presence and concentration levels of any Aroclor substances in Mother Brook and to document upstream ecological sediment reference/background levels for comparison purposes.</td>
<td>---</td>
<td>N/A</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>Not sampled due to shift in locations upstream of Westinghouse Dam.</td>
</tr>
</tbody>
</table>
TABLE C-1

SEDIMENT/SOURCE SAMPLES
LOWER NEPONSET RIVER PCBs
BOSTON/MILTON, MASSACHUSETTS
13 THROUGH 17 NOVEMBER 2017

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (inches)</th>
<th>DAS Sample No./CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-32</td>
<td>Grab sediment samples collected using a percussion corer sampler, from a fluvial deposition area along the southern bank of Mother Brook, within the dam impoundment upstream of the Centennial Dam. The sample collected from within Mother Brook, approximately 220 feet (west-northwest) upstream of the Centennial Dam, to determine the presence of any Aroclor substances in Mother Brook and to document upstream reference/background levels for comparison purposes. 42.245863 North Latitude 71.151872 West Longitude</td>
<td>---</td>
<td>10-20</td>
<td>D35245/A41L8</td>
<td>11/16/2017 14:15</td>
<td>PCBs Percent Solids TOC Grain Size</td>
<td>Sample collected using a percussion corer on 11/16/17 at 1150 hours in 5' of water. Core length 48", recovery 20%. Material described as follows: 0-10" - Dark gray-to-black silt, trace clay and twigs/roots. 10-20" - Dark brown silt and very fine sand, trace coarse gravel and roots. Specific conductance (μS/cm) = 285; Temp. (°C) = 4.232; Turbidity (NTU) = 6.09; pH = 6.97; DO (mg/L) = NR; PID = 0.</td>
</tr>
<tr>
<td>SD-33</td>
<td>Grab sediment samples collected using a percussion corer sampler, from a fluvial deposition area along the northern bank of Mother Brook, approximately 150 feet upstream of the Centennial Dam, to determine the presence of any Aroclor substances in Mother Brook and to document upstream reference/background levels for comparison purposes. 42.246252 North Latitude 71.150848 West Longitude</td>
<td>---</td>
<td>10.5-21</td>
<td>D35248/A41M1</td>
<td>11/16/2017 13:30</td>
<td>PCBs Percent Solids TOC Grain Size</td>
<td>Sample collected using a percussion corer on 11/16/17 at 1220 hours in 5' of water. Core length 48", recovery 21%. Material described as brown and dark gray silt, little coarse gravel (rocks, glass), trace roots and clay. Specific conductance (μS/cm) = 285; Temp. (°C) = 4.67; Turbidity (NTU) = 6.1; pH = 7.53; DO (mg/L) = 14.9; PID = 0.</td>
</tr>
</tbody>
</table>
TABLE C-1

SEDIMENT/SOURCE SAMPLES
LOWER NEPONSET RIVER PCBs
BOSTON/MILTON, MASSACHUSETTS
13 THROUGH 17 NOVEMBER 2017

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (inches)</th>
<th>DAS Sample No./CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATRIX: Sediment/Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-34</td>
<td>Grab sediment samples collected using a Vibe-core Mini sampler, from a fluvial deposition area within a PEM wetland area approximately 400 feet upstream of Sawmill Lane Bridge over Mother Brook (Dedham, MA). The depositional area is located along the northeastern bank of the Mother Brook, within the Stone Mill Dam impoundment area. Sample location is within the wetland to the west of 85 Emmett Avenue, to determine the presence and concentration levels of any Aroclor substances in Mother Brook and to document upstream ecological sediment reference/background levels for comparison purposes.</td>
<td>---</td>
<td>5-17</td>
<td>D35249/A41M2</td>
<td>11/16/2017 15:15</td>
<td>PCBs Percent Solids TOC Grain Size</td>
<td>Sample collected using a Vibe-core Mini on 11/16/17 at 1345 hours. Core length 60", recovery 30". Material described as dark gray silt, some very fine sand, trace clay and roots. Specific conductance (μS/cm) = 500; Temp. (°C) = 6.75; Turbidity (NTU) = 162; pH = 6.08; DO (mg/L) = 13.37; PID = 0.</td>
</tr>
<tr>
<td>SD-35</td>
<td>Grab sediment samples collected using a Vibe-core Mini sampler, from a fluvial deposition area within a PEM wetland area approximately 420 feet upstream of Sawmill Lane Bridge over Mother Brook (Dedham, MA) and approximately 110 feet west of START sediment sample location SD-35. The depositional area is located along the southeastern perimeter of a PEM wetland along the northwestern bank of the Mother Brook, within the Stone Mill Dam impoundment area. Sample location is along a peninsula covered by wetlands to the west of 85 Emmett Avenue, and northeast of Dedham Ladder 2/Engine 3 fire house at 230 Bussey Street Dedham MA, to determine the presence and concentration levels of any Aroclor substances in Mother Brook and to document upstream ecological sediment reference/background levels for comparison purposes.</td>
<td>---</td>
<td>0-16</td>
<td>D35250/A41M3</td>
<td>11/16/2017 15:35</td>
<td>PCBs Percent Solids TOC Grain Size</td>
<td>Sample collected using a Vibe-core Mini on 11/16/17 at 1411 hours in 10-12" of water. Core length 60", recovery 18". Material described as dark brown silt and very fine sand, trace roots and clay. No water quality parameters were recorded, PID = 0.</td>
</tr>
<tr>
<td>Station Location</td>
<td>Location Description/Rationale</td>
<td>Sub-location</td>
<td>Sample Depth* (inches)</td>
<td>DAS Sample No./CLP Sample No.</td>
<td>Date and Time (hours)</td>
<td>Analysis</td>
<td>Sample Description</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
<td>--------------</td>
<td>------------------------</td>
<td>-------------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>SD-36</td>
<td>Grab sediment samples collected using a percussion corer sampler, from a fluvial deposition/emergent wetland area along the west side of Bussey Street extension and bridge crossing over Mother Brook, within the surface water impoundment for Colburn Dam. The sample collected from within Mother Brook, approximately 30 feet west of Bussey Street and 400 feet upstream of the Colburn Dam, to determine the presence of any Aroclor substances in Mother Brook and to document upstream reference/background levels for comparison purposes. 42.250466 North Latitude 71.155826 West Longitude</td>
<td>A</td>
<td>0-12</td>
<td>D35286/A41Q9</td>
<td>11/16/2017 16:40</td>
<td>PCBs Percent Solids TOC Grain Size</td>
<td>Two co-located sediment sample cores collected using a percussion corer on 11/16/17 at 1345 hours in 10' of water. Core length 48", recovery 35%. Material described as follows: 0-12" - Dark gray silt and clay, trace roots. 12-14" - Dark gray silt, some clay, trace roots. 14-35" - Dark gray silt, trace roots (peat-like). Specific conductance (μS/cm) = 274; Temp. (°C) = 4.66; Turbidity (NTU) = 0; pH = 7.23; DO (mg/L) = 14.83; PID = 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>12-24</td>
<td>D35287/A41R0</td>
<td>11/16/2017 16:35</td>
<td>PCBs Percent Solids TOC Grain Size</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24-35</td>
<td>D35251/A41M4</td>
<td>11/16/2017 16:30</td>
<td>PCBs Percent Solids TOC Grain Size</td>
<td></td>
</tr>
<tr>
<td>SD-37</td>
<td>Grab sediment samples collected using a percussion corer sampler, from a fluvial deposition/emergent wetland area along the west side of Bussey Street extension and bridge crossing over Mother Brook, within the surface water impoundment for Colburn Dam. The sample collected from within Mother Brook, approximately 35 feet southwest of sediment sample location SD-36; 55 feet west of Bussey Street and 430 feet upstream of the Colburn Dam, to determine the presence and concentration levels of any Aroclor substances in Mother Brook and to document upstream ecological sediment reference/background levels for comparison purposes. 42.25043634 North Latitude 71.155929 North Longitude</td>
<td>---</td>
<td>11-22</td>
<td>D35252/A41M5</td>
<td>11/16/2017 16:05</td>
<td>PCBs Percent Solids TOC Grain Size</td>
<td>Sample collected using a percussion corer on 11/16/17 at 1310 hrs in 10' of water. Core length 40", recovery 22%. Material described as dark gray silt, trace coarse gravel and clay and roots. Specific conductance (μS/cm) = 162; Temp. (°C) = 4.45; Turbidity (NTU) = 24.4; pH = 7.33; DO (mg/L) = 11.29; PID = 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Station Location</td>
<td>Location Description/Rationale</td>
<td>Sub-location</td>
<td>Sample Depth (inches)</td>
<td>DAS Sample No./CLP Sample No.</td>
<td>Date and Time (hours)</td>
<td>Analysis</td>
<td>Sample Description</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
</tr>
<tr>
<td>MATRIX: Sediment/Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-38</td>
<td>Grab sediment samples collected using a percussion corer sampler, from a fluvial deposition area along the northern bank of Mother Brook, within an emergent wetland area upstream of the Colburn Dam. The sample collected from within Mother Brook, approximately 900 feet west of Busscy Street Bridge and 1,200 feet upstream of the Colburn Dam, to determine the presence of any Aroclor substances in Mother Brook and to document upstream reference/background levels for comparison purposes. 42.24931 North Latitude 71.158526 West Longitude</td>
<td>---</td>
<td>10-20</td>
<td>D35253/A41M6</td>
<td>11/16/2017 16:06</td>
<td>PCBs</td>
<td>Sample collected using a percussion corer on 11/16/17 at 1455 hrs in 4' of water. Core length 48", recovery 20". Material described as dark gray silt, trace clay. Specific conductance (μS/cm) = 280; Temp. (°C) = 4.46; Turbidity (NTU) = 3.1; pH = 7.58; DO (mg/L) = 15.26; PID = 0.</td>
</tr>
<tr>
<td>SD-39</td>
<td>Field duplicate of SD-06, collected for quality control.</td>
<td>---</td>
<td>12-24</td>
<td>D35254/A41M7</td>
<td>11/13/2017 11:45</td>
<td>PCBs</td>
<td>See SD-06.</td>
</tr>
<tr>
<td>SD-40</td>
<td>Field duplicate of SD-21A, collected for quality control.</td>
<td>A</td>
<td>0-18</td>
<td>D35255/A41M8</td>
<td>11/15/2017 10:53</td>
<td>PCBs</td>
<td>See SD-21A.</td>
</tr>
<tr>
<td>SD-41</td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition area along the northern bank of the Lower Neponset River, slightly downstream of the former Lewis Chemical facility and approximately 50-55 ft. upstream of Fairmont Avenue Bridge spanning the river, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations. 42.253024 North Latitude 71.119186 West Longitude</td>
<td>---</td>
<td>0-12</td>
<td>D35256/A41M9</td>
<td>11/14/2017 15:03</td>
<td>PCBs</td>
<td>Sample was collected using a hand auger in 14-17” of water. Material described as dark gray fine sand, some silt, coarse gravel, cobbles, trace roots and debris (glass). No water quality parameters were recorded, PID = 0.</td>
</tr>
</tbody>
</table>
TABLE C-1

SEDIMENT/SOURCE SAMPLES
LOWER NEPONSET RIVER PCBS
BOSTON/MILTON, MASSACHUSETTS
13 THROUGH 17 NOVEMBER 2017

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (inches)</th>
<th>DAS Sample No./ CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-42</td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition area along the southern bank of the Lower Neponset River, approximately 150 feet downstream of the pipe discharge (possible raceway) location and approximately 370 feet downstream of the Tileston & Hollingsworth Dam. Sample location in the river slightly north-northwest (approximately 10 ft.) off the line that extents northwest parallel to the eastern wall of the dilapidated former paper mill building, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations. 42.261234 North Latitude 71.109095 West Longitude</td>
<td>---</td>
<td>0-12</td>
<td>D35257/A41N0</td>
<td>11/14/2017 13:26</td>
<td>PCBs, Percent Solids TOC Grain Size</td>
<td>Sample was collected using a hand auger in 12-14” of water. Material described as dark brown silt, trace clay and coarse gravel, roots, twigs, slight oily odor. No water quality parameters were recorded, PID = 0.</td>
</tr>
</tbody>
</table>
TABLE C-1

SEDIMENT/SOURCE SAMPLES
LOWER NEPONSET RIVER PCBs
BOSTON/MILTON, MASSACHUSETTS
13 THROUGH 17 NOVEMBER 2017

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (inches)</th>
<th>DAS Sample No./CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATRIX: Sediment/Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD-43</td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition area along the southern bank of the Lower Neponset River, immediately downstream of the 24-inch pipe discharge (possible raceway) location and approximately 230 feet downstream of the Tileston & Hollingsworth Dam. Sample location in the Neponset River down gradient the discharge point for the 24 inch pipe running parallel to the bank slope. This is also down gradient of the location where two sections of the former paper mill building meet (3-story and 2-story sections), and several the pipes extend out of the building. It appears that the bank slope beneath this section of the Riverbank has been washed of most of its finer soil particles by the discharge from the pipes, and downstream of the confluence of Mother Brook and the Neponset River, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations.</td>
<td>---</td>
<td>0-12</td>
<td>D35258/A41N1</td>
<td>11/14/2017 13:46</td>
<td>PCBs Percent Solids TOC Grain Size</td>
<td>Sample was collected using a hand auger in 24° of water. Material described as gray fine sand and silt, some coarse-to-fine gravel, trace roots. No water quality parameters were recorded, PID = 0.</td>
</tr>
<tr>
<td>SD-44</td>
<td>Grab sediment samples collected using a Vibe-core Mini sampler, from a fluvial deposition area along the northern bank of the Lower Neponset River, adjacent/slightly upstream of the former Lewis Chemical facility and approximately 350 ft. upstream of Fairmont Avenue Bridge spanning the river, and downstream of the confluence of Mother Brook and the Neponset River, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations.</td>
<td>---</td>
<td>13-26</td>
<td>D35259/A41N2</td>
<td>11/15/2017 10:00</td>
<td>PCBs Percent Solids TOC Grain Size</td>
<td>Sample was collected using a Vibe-core Mini on 11/14/17 at 1500 hours in 2° of water. Core length 60°, recovery 26°. Sample described as gray fine -to-very fine sand, some silt, trace clay and roots, slight petroleum odor. Specific conductance (μS/cm) = 352; Temp. (°C) = 4.69; Turbidity (NTU) = 40.3; pH = 6.97; DO (mg/L) = 9.61; PID = 0, slight petroleum odor and slight sheen when core removed from water.</td>
</tr>
<tr>
<td>SD-45</td>
<td>Field duplicate of SD-22, collected for quality control.</td>
<td>---</td>
<td>24-48</td>
<td>D35260/A41N3</td>
<td>11/15/2017 14:23</td>
<td>PCBs Percent Solids TOC Grain Size</td>
<td>See SD-22.</td>
</tr>
</tbody>
</table>
TABLE C-1

SEDIMENT/SOURCE SAMPLES
LOWER NEPONSET RIVER PCBs
BOSTON/MILTON, MASSACHUSETTS
13 THROUGH 17 NOVEMBER 2017

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (inches)</th>
<th>DAS Sample No./CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-100</td>
<td>Grab sediment samples collected using a Vibe-core Mini sampler, from a fluvial deposition and emergent wetland area along the southern bank of the Neponset River, upstream of the Baker Dam. The source sample was collected from within the surface water impoundment area, approximately 90 feet upstream of the Baker Dam, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations.</td>
<td>A</td>
<td>0-6</td>
<td>D35277/A41P2</td>
<td>11/14/2017 14:20</td>
<td>PCBs</td>
<td>Sample was collected using a Vibe-core Mini in 18-24" of water. Core length 60", recovery 32". Sample described as follows: 0-11" - Gray silt, little leaves, twigs, little gravel, trace clay. 11-22" - Gray silt and very fine sand, trace twigs, roots. 22-32" - Gray silt and very fine sand, trace roots. No water quality parameters recorded, PID = 0, slight petroleum odor.</td>
</tr>
<tr>
<td></td>
<td>42.270481 North Latitude</td>
<td>B</td>
<td>12-22</td>
<td>D35278/A41P3</td>
<td>11/14/2017 14:23</td>
<td>PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>71.069031 West Longitude</td>
<td>C</td>
<td>23-32</td>
<td>D35279/A41P4</td>
<td>11/14/2017 14:26</td>
<td>PCBs</td>
<td></td>
</tr>
</tbody>
</table>

Temp (°C) = Temperature (degrees Celsius)
Spec. Cond. (μS/cm) = Specific conductance (micro Siemens per centimeter)
NTU = Nephelometric Turbidity Units
CLP = Contract Laboratory Program
DAS = Delivery of Analytical Services
CGI/O•₂ (LEL/%) = Combustible Gas Indicator/Oxygen Meter (Lower Explosive Limit/Percent)
PID = Photoionization Detector
COC = Chain of Custody
ppm = parts per million
No. = Number
NR = Not Recorded.
* = Below the sediment/water interface.
" = inches.
' = feet.

Analyses:
PCBs = Aroclors by SOM02.3
TOC = Total Organic Carbon (SW-846 9060/Lloyd Kahn)
Grain Size = ASTM 422 Grain Size with Hydrometer
TABLE C-2
AQUEOUS QUALITY ASSURANCE/QUALITY CONTROL SAMPLES
LOWER NEPONSET RIVER PCBs
BOSTON/MILTON, MASSACHUSETTS
13 THROUGH 17 NOVEMBER 2017 and 4 THROUGH 6 SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Station Location</th>
<th>DAS Sample No./ CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB-01</td>
<td>D35261/A41N4</td>
<td>11/14/2017 12:25</td>
<td>PCBs</td>
<td>Sediment/Source sampling equipment (hand auger) rinsate blank sample, collected for quality control.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOC</td>
<td></td>
</tr>
<tr>
<td>RB-02</td>
<td>D35262/A41N5</td>
<td>11/14/2017 15:40</td>
<td>PCBs</td>
<td>Sediment/Source sampling equipment (hand auger) rinsate blank sample, collected for quality control.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOC</td>
<td></td>
</tr>
<tr>
<td>RB-03</td>
<td>D35263/A41N6</td>
<td>11/15/2017 15:00</td>
<td>PCBs</td>
<td>Sediment/Source sampling equipment (hand auger) rinsate blank sample, collected for quality control.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOC</td>
<td></td>
</tr>
<tr>
<td>RB-04</td>
<td>D35264/A41N7</td>
<td>11/16/2017 16:30</td>
<td>PCBs</td>
<td>Sediment/Source sampling equipment (hand auger) rinsate blank sample, collected for quality control.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOC</td>
<td></td>
</tr>
<tr>
<td>RB-05</td>
<td>D35265/A41N8</td>
<td>11/16/2017 16:15</td>
<td>PCBs</td>
<td>Sediment/Source sampling equipment (percussion corer) rinsate blank sample, collected for quality control.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOC</td>
<td></td>
</tr>
<tr>
<td>RB-01</td>
<td>D35487/PA41S5</td>
<td>9/4/2018 17:00</td>
<td>CLP 209 Congeners</td>
<td>Sediment/Source sampling equipment (hand auger) rinsate blank sample, collected for quality control.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOC</td>
<td></td>
</tr>
<tr>
<td>RB-02</td>
<td>D35488/PA41S6</td>
<td>9/5/2018 12:00</td>
<td>CLP 209 Congeners</td>
<td>Sediment/Source sampling equipment hand auger) rinsate blank sample, collected for quality control.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOC</td>
<td></td>
</tr>
<tr>
<td>RB-03</td>
<td>D35489/PA41S7</td>
<td>9/6/2018 12:00</td>
<td>CLP 209 Congeners</td>
<td>Sediment/Source sampling equipment (hand auger) rinsate blank sample, collected for quality control.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TOC</td>
<td></td>
</tr>
</tbody>
</table>

DAS = Delivery of Analytical Services
CLP = Contract Laboratory Program
COC = Chain of Custody
No. = Number
QA/QC = Quality Assurance/Quality Control

Analyses:
PCBs = Aroclors by SOM02.3
TOC = Total Organic Carbon (SW-846 9060/Lloyd Kahn)
TABLE C-3

PERFORMANCE EVALUATION SAMPLES
LOWER NEPONSET RIVER PCBS
BOSTON/MILTON, MASSACHUSETTS
13 THROUGH 17 NOVEMBER 2017 and 4 THROUGH 6 SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Station Location</th>
<th>CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS1591</td>
<td>A41Q2</td>
<td>11/15/17 8:30</td>
<td>Aroclors</td>
<td>Solid PE sample for Aroclors (sediment samples).</td>
</tr>
<tr>
<td>AS1667</td>
<td>A41P5</td>
<td>11/17/17 9:00</td>
<td>Aroclors</td>
<td>Solid PE sample for Aroclors (sediment samples).</td>
</tr>
<tr>
<td>AS1900</td>
<td>A41P6</td>
<td>11/17/17 9:00</td>
<td>Aroclors</td>
<td>Solid PE sample for Aroclors (sediment samples).</td>
</tr>
<tr>
<td>C0128</td>
<td>PA41T1</td>
<td>9/7/18 10:30</td>
<td>209 CBCs</td>
<td>Solid PE sample for Congeners (sediment samples).</td>
</tr>
</tbody>
</table>

MATRIX: Performance Evaluation Samples

COC = Chain of Custody
No. = Number

Analyses:
- Aroclors = Aroclors by SOM02.3
- 209 CBCs = Contract Laboratory Program (CLP) 209 Congeners (HRSM01.2 for PCB Congeners)
TABLE C-4

SEDIMENT/SOURCE SAMPLES
LOWER NEPONSET RIVER PCBS
BOSTON/MILTON, MASSACHUSETTS
4 THROUGH 6 SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (feet)</th>
<th>Scribe Sample No/ DAS Sample No./ CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBD-C1</td>
<td>Grab sediment samples collected using a sludge sampler/hand auger, from a fluvial deposition and emergent wetland area along the southern bank of the Neponset River, upstream of the Baker Dam. The source sample was collected from within the surface water impoundment area, approximately 100 feet upstream of the Baker Dam to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations. North Latitude West Longitude</td>
<td>A</td>
<td>0-1</td>
<td>0134LN-0001</td>
<td>9/4/2018 10:05</td>
<td>Field PCBs</td>
<td>Sample was collected using a sludge sampler/hand auger in 6" of water. Material described as: 0-1' brown fine SAND and SILT, some organics (leaves, sticks, roots). PID = 0. 1-2' brown fine SAND and SILT, trace organics. PID = 0. 2-3' brown fine SAND and SILT. PID = 1, water had a slight oil sheen and odor when augered. 3-3.5' brown fine SAND and SILT. PID = 0. Specific conductance (μS/cm) = 0.83; Temp (°C) = 24.5; Turbidity (NTU) = 4.01; pH = 7.19; ORP (mV) = -143.9.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>1-2</td>
<td>0134LN-0002</td>
<td>9/4/2018 10:10</td>
<td>Field PCBs</td>
<td>Sample was collected using a sludge sampler/hand auger in 6" of water. Material described as: 0-1' brown fine SAND and SILT, some organics (leaves, sticks, roots), trace fine-to-medium gravel. PID = 0. 1-2' brown fine SAND and SILT, trace organics, trace fine-to-medium gravel. Specific conductance (μS/cm) = 0.83; Temp (°C) = 24.5; Turbidity (NTU) = 4.01; pH = 7.19; ORP (mV) = -143.9; PID = 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>2-3</td>
<td>0134LN-0003</td>
<td>9/4/2018 10:20</td>
<td>Field PCBs</td>
<td>Sample was collected using a sludge sampler/hand auger in 6" of water. Material described as: 0-1' brown fine SAND and SILT, some organics (leaves, sticks, roots). PID = 0. 1-2' brown fine SAND and SILT, trace organics. PID = 0. 2-3' brown fine SAND and SILT. PID = 1, water had a slight oil sheen and odor when augered. 3-3.5' brown fine SAND and SILT. PID = 0. Specific conductance (μS/cm) = 0.83; Temp (°C) = 24.5; Turbidity (NTU) = 4.01; pH = 7.19; ORP (mV) = -143.9.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>3-3.5</td>
<td>0134LN-0004</td>
<td>9/4/2018 10:25</td>
<td>Field PCBs</td>
<td>Sample was collected using a sludge sampler/hand auger in 6" of water. Material described as: 0-1' brown fine SAND and SILT, some organics (leaves, sticks, roots), trace fine-to-medium gravel. PID = 0. 1-2' brown fine SAND and SILT, trace organics, trace fine-to-medium gravel. Specific conductance (μS/cm) = 0.83; Temp (°C) = 24.5; Turbidity (NTU) = 4.01; pH = 7.19; ORP (mV) = -143.9; PID = 0.</td>
</tr>
</tbody>
</table>

WBD-C2
Grab sediment samples collected using a sludge sampler/hand auger, from a fluvial deposition and emergent wetland area along the southern bank of the Neponset River, upstream of the Baker Dam. The source sample was collected from within the surface water impoundment area, approximately 200 feet upstream of the Baker Dam to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations. North Latitude West Longitude

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (feet)</th>
<th>Scribe Sample No/ DAS Sample No./ CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBD-C2</td>
<td></td>
<td>A</td>
<td>0-1</td>
<td>0134LN-0005</td>
<td>9/4/2018 10:45</td>
<td>Field PCBs</td>
<td>Sample was collected using a sludge sampler/hand auger in 6" of water. Material described as: 0-1' brown fine SAND and SILT, some organics (leaves, sticks, roots), trace fine-to-medium gravel. PID = 0. 1-2' brown fine SAND and SILT, trace organics, trace fine-to-medium gravel. Specific conductance (μS/cm) = 0.83; Temp (°C) = 24.5; Turbidity (NTU) = 4.01; pH = 7.19; ORP (mV) = -143.9; PID = 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>1-2</td>
<td>0134LN-0006</td>
<td>9/4/2018 10:55</td>
<td>Field PCBs</td>
<td>Sample was collected using a sludge sampler/hand auger in 6" of water. Material described as: 0-1' brown fine SAND and SILT, some organics (leaves, sticks, roots). PID = 0. 1-2' brown fine SAND and SILT, trace organics. PID = 0. 2-3' brown fine SAND and SILT. PID = 1, water had a slight oil sheen and odor when augered. 3-3.5' brown fine SAND and SILT. PID = 0. Specific conductance (μS/cm) = 0.83; Temp (°C) = 24.5; Turbidity (NTU) = 4.01; pH = 7.19; ORP (mV) = -143.9.</td>
</tr>
</tbody>
</table>
TABLE C-4
SEDIMENT/SOURCE SAMPLES
LOWER NEPONSET RIVER PCBS
BOSTON/MILTON, MASSACHUSETTS
4 THROUGH 6 SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (feet)</th>
<th>Scribe Sample No/ DAS Sample No./ CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBD-C4</td>
<td>Grab sediment samples collected using a percussion corer, from within a fluvial deposition and emergent wetland area along the northern bank of the Neponset River, upstream of the Baker Dam. The source sample was collected from within the surface water impoundment area, adjacent condominium patio area, approximately 50 feet upstream of the Baker Dam to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations. North Latitude West Longitude</td>
<td>A</td>
<td>0-1</td>
<td>0134LN-0007</td>
<td>9/4/2018 10:10</td>
<td>Field PCBs</td>
<td>Sample was collected using a percussion corer in 12" of water. Material described as: 0-3' dark brown organic rich SILT. 3-4' dark brown organic rich SILT and SAND. Specific conductance (μS/cm) = 0.83; Temp. (°C) = 24.5; Turbidity (NTU) = 4.01; pH = 7.19; ORP (mV) = -143.9; PID = 1 ppm.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>1-2</td>
<td>0134LN-0008</td>
<td>9/4/2018 10:10</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>2-3</td>
<td>0134LN-0009</td>
<td>9/4/2018 10:10</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td>WBD-C5</td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition and emergent wetland area along the northern bank of the Neponset River, upstream of the Baker Dam. The source sample was collected from within the surface water impoundment area, adjacent Condominium Power House area, approximately 200 feet upstream of the Baker Dam to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations. North Latitude West Longitude</td>
<td>A</td>
<td>0-1</td>
<td>0134LN-0011</td>
<td>9/4/2018 10:30</td>
<td>Field PCBs</td>
<td>Sample was collected using a hand auger in 18" of water. Material described as: 0-2’dark brown organic rich SILT. 2-3’ brown SILT, trace fine-to-coarse sand, fine-to-medium gravel, and debris (metal), saturated. Specific conductance (μS/cm) = 0.83; Temp. (°C) = 24.5; Turbidity (NTU) = 4.01; pH = 7.19; ORP (mV) = -143.9; PID = 0. Oil sheen and petroleum odor noted when augering.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>1-2</td>
<td>0134LN-0012</td>
<td>9/4/2018 10:36</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C (SD-01)</td>
<td></td>
<td>2-3</td>
<td>0134LN-0013/ D35475/ PA41R3/A41R3</td>
<td>9/4/2018 10:45</td>
<td>Field PCBs</td>
<td>209 C8Cs TOC % solids</td>
</tr>
</tbody>
</table>
TABLE C-4
SEDIMENT/SOURCE SAMPLES
LOWER NEPONSET RIVER PCBS
BOSTON/MILTON, MASSACHUSETTS
4 THROUGH 6 SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (feet)</th>
<th>Scribe Sample No./ DAS Sample No./ CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTB-C1</td>
<td>Grab sediment samples collected using a hand auger, from a point bar in an upstream area located within the Pine Tree Brook tributary channel to the Neponset River. Sample collected in the brook, upstream of the Neponset Riverwalk Trail and the Railroad Bridge overpass and downstream of the Elliot Street Bridge/Brook Hill Road, to determine the presence of any Aroclor substances within this tributary to the Lower Neponset River and to document upstream reference/background levels for comparison purposes. North Latitude West Longitude</td>
<td>A (SD-02)</td>
<td>0-1</td>
<td>0134LN-0014/ D35476/ PA41R4/A41R4</td>
<td>9/4/2018 11:35</td>
<td>Field PCBs PCBs 209 CBCs TOC % solids</td>
<td>Sample was collected using a hand auger in <1" of water. Material described as: 0-1’ orange-brown medium -to-coarse SAND, some fine-to-medium gravel, little fine-to-medium sand, trace silts, debris (glass, metal), and organics.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>1-2</td>
<td>0134LN-0015</td>
<td>9/4/2018 11:38</td>
<td>Field PCBs</td>
<td>1-2’ Material described as brown-to-yellow brown coarse-to-medium SAND, little fine sand and silt. Specific conductance (μS/cm) = 0.145; Temp. (°C) = 24.9; Turbidity (NTU) = 1.03; pH = 6.65; PID = 0.</td>
</tr>
<tr>
<td>BCA-C1</td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition area on the downstream side of the most-downstream island adjacent to a wetland area within the braided channel segment of the Neponset River, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations, as well as document ecological impacts. North Latitude West Longitude</td>
<td>A</td>
<td>0-1</td>
<td>0134LN-0016</td>
<td>9/4/2018 14:35</td>
<td>Field PCBs</td>
<td>Sample was collected using a hand auger from along the edge of the island and with emergent wetland vegetation. Material described as: 0-3” brown fine SAND and SILT, little organics (roots, leaves). 3-6” gray medium-to-coarse SAND and SILT, some medium gravel. 6”-1.5” gray medium-to-coarse SAND and SILT, some medium-to-coarse gravel. Specific conductance (μS/cm) = 0.73; Temp. (°C) = 26.8; Turbidity (NTU) = 2.59; pH = 7.39; ORP (mV) = -93.9; PID = 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>1-2</td>
<td>0134LN-0017</td>
<td>9/4/2018 14:45</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td>Station Location</td>
<td>Location Description/Rationale</td>
<td>Sub-location</td>
<td>Scribe Sample No/ DAS Sample No./ CLP Sample No.</td>
<td>Date and Time (hours)</td>
<td>Analysis</td>
<td>Sample Description</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
<td>--------------</td>
<td>---</td>
<td>------------------------</td>
<td>----------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>0134LN-0018</td>
<td>9/4/2018 14:20</td>
<td>Field PCBs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>0134LN-0019</td>
<td>9/4/2018 14:45</td>
<td>Field PCBs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>0134LN-0020</td>
<td>9/4/2018 14:57</td>
<td>Field PCBs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>0134LN-0021</td>
<td>9/4/2018 15:09</td>
<td>Field PCBs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>0134LN-0022</td>
<td>9/4/2018 15:50</td>
<td>Field PCBs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>0134LN-0023</td>
<td>9/4/2018 15:55</td>
<td>Field PCBs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C(SD-03)</td>
<td>0134LN-0024/D35477/PA41R5/A41R5</td>
<td>9/4/2018 16:00</td>
<td>Field PCBs</td>
<td>PCBs 209 CBCs TOC % solids</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>0134LN-0025</td>
<td>9/4/2018 16:05</td>
<td>Field PCBs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>0134LN-0026</td>
<td>9/4/2018 16:10</td>
<td>Field PCBs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>0134LN-0027</td>
<td>9/4/2018 16:13</td>
<td>Field PCBs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample was collected using a hand auger; no surface water present. Material described as:

- 0-1' SAND and SILT, trace organics.
- 1-1.8' brown SILT, little clay, wet.
- 1.9-3.8' SILT and SAND, wet.
- Specific conductance (μS/cm) = 0.83; Temp. (°C) = 24.5; Turbidity (NTU) = 4.01; pH = 7.19; ORP (mV) = -143.9; PID = 0.
TABLE C-4
SEDIMENT/SOURCE SAMPLES
LOWER NEPONSET RIVER PCBS
BOSTON/MILTON, MASSACHUSETTS
4 THROUGH 6 SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (feet)</th>
<th>Scribe Sample No/ DAS Sample No./ CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCA-C4</td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition area, within a wetland area along the northern side of the river bank on the Large Western Island within the upstream portion of the Braided Channel Area segment of the Neponset River, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations, as well as document ecological impacts. North Latitude West Longitude</td>
<td>A</td>
<td>0-1</td>
<td>0134LN-0028</td>
<td>9/4/2018 17:05</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>1-2</td>
<td>0134LN-0029</td>
<td>9/4/2018 17:10</td>
<td>Field PCBs</td>
<td>PCBs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>2-2.5</td>
<td>0134LN-0030</td>
<td>9/4/2018 17:15</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>2.5-3</td>
<td>0134LN-0031</td>
<td>9/4/2018 17:20</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>3-4</td>
<td>0134LN-0032</td>
<td>9/4/2018 17:25</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td>BCA-C5</td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition area, within a wetland area along the southern side of the Large Western Island within the upstream portion of the Braided Channel Area segment of the Neponset River, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations, as well as document ecological impacts. North Latitude West Longitude</td>
<td>A</td>
<td>0-0.8</td>
<td>0134LN-0033</td>
<td>9/4/2018 17:20</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>0.8-1.7</td>
<td>0134LN-0034</td>
<td>9/4/2018 17:30</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>1.7-2.5</td>
<td>0134LN-0035</td>
<td>9/4/2018 17:35</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D (SD-04)</td>
<td>2.5-4</td>
<td>0134LN-0036/D35478/PA41R6/A41R6</td>
<td>9/4/2018 17:40</td>
<td>Field PCBs</td>
<td>209 CBCs TOC % solids</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>4-4.8</td>
<td>0134LN-0037</td>
<td>9/4/2018 17:45</td>
<td>Field PCBs</td>
<td></td>
</tr>
</tbody>
</table>
TABLE C-4

SEDIMENT/SOURCE SAMPLES

LOWER NEPONSET RIVER PCBS

BOSTON/MILTON, MASSACHUSETTS

4 THROUGH 6 SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (feet)</th>
<th>Scribe Sample No./DAS Sample No./CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCA-C6</td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition area, from within a wetland area on the large central Island, within the braided channel segment of the Neponset River, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations, as well as document ecological impacts. North Latitude West Longitude</td>
<td>A</td>
<td>0-0.8</td>
<td>0134LN-0038</td>
<td>9/5/2018 17:20</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>0.8-1.7</td>
<td>0134LN-0039</td>
<td>9/5/2018 17:30</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>1.7-2.5</td>
<td>0134LN-0040</td>
<td>9/5/2018 17:35</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>2.5-4</td>
<td>0134LN-0041</td>
<td>9/5/2018 17:40</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>4-4.8</td>
<td>0134LN-0042</td>
<td>9/5/2018 17:45</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>0.8-1.7</td>
<td>0134LN-0043</td>
<td>9/5/2018 17:30</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G</td>
<td>1.7-2.5</td>
<td>0134LN-0044</td>
<td>9/5/2018 17:35</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H</td>
<td>2.5-4</td>
<td>0134LN-0045</td>
<td>9/5/2018 17:40</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>4-4.8</td>
<td>0134LN-0046</td>
<td>9/5/2018 17:45</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td>BCA-C7</td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition area, within a wetland area along the southern side of the Large Western Island within the upstream portion of the Braided Channel Area segment of the Neponset River, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations, as well as document ecological impacts. North Latitude West Longitude</td>
<td>A</td>
<td>0-1.3</td>
<td>0134LN-0047</td>
<td>9/5/2018 9:25</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>1.3-2</td>
<td>0134LN-0048</td>
<td>9/5/2018 9:30</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>2-3</td>
<td>0134LN-0049</td>
<td>9/5/2018 9:36</td>
<td>Field PCBs</td>
<td></td>
</tr>
</tbody>
</table>

Sample was collected using a hand auger. Petroleum/oil noted in sediments in hole below 2 feet. Material described as: 0-0.8' dark brown fine SAND and SILT, trace organics. 0.8-1.7' light brown-orange fine-to-coarse SAND, moist. 1.7-2.5' brown fine SAND and SILT, wet. 2.5-4' dark brown SILT and SAND, wet. 4-4.8' SILT and SAND, some gravel, wet. Specific conductance (μS/cm) = 0.83; Temp. (°C) = 24.5; Turbidity (NTU) = 4.01; pH = 7.19; ORP (mV) = -143.9; PID = 0.
TABLE C-4
SEDIMENT/SOURCE SAMPLES
LOWER NEPONSET RIVER PCBS
BOSTON/MILTON, MASSACHUSETTS
4 THROUGH 6 SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (feet)</th>
<th>Scribe Sample No/ DAS Sample No./ CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD-C1</td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition area approximately 10 feet off the southern bank of the Neponset River, within an emergent wetland area in the Tileston & Hollingsworth Dam surface water impoundment. The sample was collected approximately 30 feet upstream of the Dam, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations, as well as document ecological impacts. North Latitude West Longitude</td>
<td>A</td>
<td>0-1</td>
<td>0134LN-0050</td>
<td>9/5/2018 12:55</td>
<td>Field PCBs</td>
<td>Sample was collected using a hand auger from a wetland area along the southern side of the river. Material described as: 0-1' brown SAND and SILT, trace organics, wet. 1-2' brown SAND and SILT, trace fine gravel, wet. 2-3' brown SILT and SAND, wet. 3-4' brown SILT and SAND, wet. 4-5' brown SILT and SAND wet. 5-6' brown SILT, trace fine-to-coarse sand, fine-to-medium gravel, organics, clay, saturated. 6-6.5 brown SILT, little clay, organics. 6.5-7' Specific conductance (μS/cm) = 0.88; Temp. (°C) = 25.5; Turbidity (NTU) = 6.05; pH = 7.04; ORP (mV) = 84.8; PID = 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>1-2</td>
<td>0134LN-0051</td>
<td>9/5/2018 12:58</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>2-3</td>
<td>0134LN-0052</td>
<td>9/5/2018 13:00</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>3-4</td>
<td>0134LN-0053</td>
<td>9/5/2018 13:03</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>4-5</td>
<td>0134LN-0054</td>
<td>9/5/2018 13:05</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F (SD-07)</td>
<td>5-6</td>
<td>0134LN-0055/ D35481/ PA41R9/A41R9</td>
<td>9/5/2018 13:10</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G (SD-05)</td>
<td>6-6.5</td>
<td>0134LN-0056/ D35479/ PA41R7/A41R7</td>
<td>9/5/2018 13:15</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>H</td>
<td>6.5-7</td>
<td>0134LN-0057</td>
<td>9/5/2018 13:20</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td>THD-C2</td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition area approximately 10 feet off the northern bank of the Neponset River, within an emergent wetland area in the Tileston & Hollingsworth Dam surface water impoundment. The sample was collected approximately 50 feet upstream of the Dam, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations, as well as document ecological impacts. North Latitude West Longitude</td>
<td>A</td>
<td>0-1</td>
<td>0134LN-0058</td>
<td>9/5/2018 13:35</td>
<td>Field PCBs</td>
<td>Sample was collected using a hand auger from a wetland area along the southern side of the river. Material described as: 0-1' brown SAND and SILT, trace organics, wet. 1-2' brown SAND and SILT, wet. 2-3' brown SILT and SAND, trace fine gravel, wet. 3-4' brown fine SAND and SILT, medium gravel. Specific conductance (μS/cm) = 0.88; Temp. (°C) = 25.5; Turbidity (NTU) = 6.05; pH = 7.04; ORP (mV) = 84.8; PID = 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>1-2</td>
<td>0134LN-0059</td>
<td>9/5/2018 13:40</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>2-3</td>
<td>0134LN-0060</td>
<td>9/5/2018 13:45</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>3-4</td>
<td>0134LN-0061</td>
<td>9/5/2018 13:50</td>
<td>Field PCBs</td>
<td></td>
</tr>
</tbody>
</table>
TABLE C-4

SEDIMENT/SOURCE SAMPLES
LOWER NEPONSET RIVER PCBS
BOSTON/MILTON, MASSACHUSETTS
4 THROUGH 6 SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (feet)</th>
<th>Scribe Sample No/ DAS Sample No./ CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD-C3</td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition area along the northern bank of the Lower Neponset River, slightly downstream of the former Lewis Chemical facility and approximately 50-55 ft. upstream of Fairmount Avenue Bridge spanning the river, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations. North Latitude West Longitude</td>
<td>A</td>
<td>0-1</td>
<td>0134LN-0062</td>
<td>9/5/2018 13:05</td>
<td>Field PCBs</td>
<td>Sample was collected using a hand auger from a wetland area along the southern side of the river. Material described as: 0-1' dark brown-to-gray SAND and SILT, little medium gravel. 1-2.5' dark brown SAND and SILT, medium-to-coarse gravel. Specific conductance (μS/cm) = 0.88; Temp. (°C) = 25.5; Turbidity (NTU) = 6.05; pH = 7.04; ORP (mV) = 84.8; PID = 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>1-2</td>
<td>0134LN-0063</td>
<td>9/5/2018 13:12</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>2-2.5</td>
<td>0134LN-0064</td>
<td>9/5/2018 13:16</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td>LCA-C1</td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition area along the northern bank of the Lower Neponset River, slightly downstream of the former Lewis Chemical facility and approximately 50-55 ft. upstream of Fairmount Avenue Bridge spanning the river, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponset River for waste source and observed release evaluations. North Latitude West Longitude</td>
<td>A</td>
<td>0-0.8</td>
<td>0134LN-0065</td>
<td>9/5/2018 15:40</td>
<td>Field PCBs</td>
<td>Sample was collected using a hand auger from a wetland area along the western side of the river in approximately 8" of water. Material described as: 0.0 - 0.8' brown-to-dark brown SILT, trace fine-to-medium sand, gravel, clay, and organics. Both samples collected from same interval immediately adjacent locations. Specific conductance (μS/cm) = 0.86; Temp. (°C) = 25.6; Turbidity (NTU) = 7.27; pH = 6.71; ORP (mV) = 125.5; PID = 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>0-0.8</td>
<td>0134LN-0066</td>
<td>9/5/2018 15:40</td>
<td>Field PCBs</td>
<td></td>
</tr>
</tbody>
</table>
TABLE C-4
SEEDMENT/SOURCE SAMPLES
LOWER NEPONSET RIVER PCBs
BOSTON/MILTON, MASSACHUSETTS
4 THROUGH 6 SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (feet)</th>
<th>Scribe Sample No/ DAS Sample No./ CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCA-C2</td>
<td>Grab sediment samples collected using a hand auger, from a fluvial deposition area along the northern bank of the Lower Neponsett River, slightly downstream of the former Lewis Chemical facility and approximately 200 ft. upstream of Fairmount Avenue Bridge spanning the river, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponsett River for waste source and observed release evaluations. North Latitude West Longitude</td>
<td>A</td>
<td>0-1</td>
<td>0134LN-0067</td>
<td>9/5/2018 16:20</td>
<td>Field PCBs</td>
<td>Sample was collected using a hand auger from a wetland area along the western side of the river in approximately 8" of water. Material described as: (A) - 0.0 - 1.0' brown-to-dark brown SILT, trace fine-to-medium sand, gravel, clay, and organics. (B) - 1.0 - 2.0' brown-to-dark brown SILT, trace fine-to-medium sand, gravel, clay, and organics. (C) - 2.0 - 3.0' brown-to-dark brown SILT, trace fine-to-medium sand, gravel, and clay. (D) - 3-4' brown-to-dark brown SILT, trace fine-to-medium sand and gravel and clay. (E) - 4-5' brown-to-dark brown SILT, trace fine-to-medium sand and gravel and clay.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>1-2</td>
<td>0134LN-0068</td>
<td>9/5/2018 16:22</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>2-3</td>
<td>0134LN-0069</td>
<td>9/5/2018 16:24</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>3-4</td>
<td>0134LN-0070</td>
<td>9/5/2018 16:26</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E (SD-06)</td>
<td>4-5</td>
<td>0134LN-0071/D35480/PA41R8/A41R8</td>
<td>9/5/2018 16:28</td>
<td>Field PCBs</td>
<td>Sample was collected using a hand auger from a wetland area along the western side of the river in approximately 8" of water. Material described as: (A) - 0.0 - 1.0' brown-to-dark brown SILT, trace fine-to-medium sand, gravel, clay, and organics. (B) - 1.0 - 2.0' brown-to-dark brown SILT, trace fine-to-medium sand, gravel, clay, and organics. (C) - 2.0 - 3.0' brown-to-dark brown SILT, trace fine-to-medium sand, gravel, and clay. (D) - 3-4' brown-to-dark brown SILT, trace fine-to-medium sand and gravel and clay. (E) - 4-5' brown-to-dark brown SILT, trace fine-to-medium sand and gravel and clay.</td>
</tr>
</tbody>
</table>

LCA-C3	Grab sediment samples collected using a hand auger, from a fluvial deposition area along the northern bank of the Lower Neponsett River, slightly downstream of the former Lewis Chemical facility and approximately 200 ft. upstream of Fairmount Avenue Bridge spanning the river, to determine the presence and level of any hazardous Aroclor substances within the Lower Neponsett River for waste source and observed release evaluations. North Latitude West Longitude	A	0-1	0134LN-0072	9/5/2018 16:15	Field PCBs	Specific conductance (μS/cm) = 0.86; Temp. (°C) = 25.6; Turbidity (NTU) = 7.27; pH = 6.71; ORP (mV) = 125.5; PID = 0.
		B	1-2	0134LN-0073	9/5/2018 16:18	Field PCBs	
		C	2-3	0134LN-0074	9/5/2018 16:20	Field PCBs	
		D (SD-11)	3-4	0134LN-0075/D35485/PA41S3/A41S3	9/5/2018 16:24	Field PCBs	Specific conductance (μS/cm) = 0.86; Temp. (°C) = 25.6; Turbidity (NTU) = 7.27; pH = 6.71; ORP (mV) = 125.5; PID = 0. Slight petroleum odor and sheen on the water when augering.
TABLE C-4
SEDIMENT/SOURCE SAMPLES
LOWER NEPONSET RIVER PCBs
BOSTON/MILTON, MASSACHUSETTS
4 THROUGH 6 SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (feet)</th>
<th>Scribe Sample No/ DAS Sample No./ CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBC-C1 A</td>
<td>Grab sediment sample collected from potentially contaminated source area located upstream of the Tileston & Hollingsworth Dam and downstream of the confluence of Mother Brook and the Neponset River, approximately 125 feet east of the Dana Ave bridge. Sample collected for PCB Congener analysis to determine the presence and level of any hazardous PCB substances within the Lower Neponset River for waste source and observed release evaluations. North Latitude West Longitude</td>
<td>A</td>
<td>0-0.5</td>
<td>0134LN-0076</td>
<td>9/5/2018 17:20</td>
<td>Field PCBs</td>
<td>Sample was collected using a hand auger. Material described as: 0.0-0.5’ dark brown, organic rich SILT, little sand, trace fine-to-coarse gravel, and plant debris. 0.5-1.5’ dark brown, organic rich SILT, some sand, trace gravel, 2.5-3’ light brown sandy SILT and CLAY, trace gravel and organics. 3.5-3.5’ brown SILTY SAND, trace gravel, clay, and organics. 3.5-4’ dark brown, organic rich SILT, some sand, trace gravel. 4-5’ dark brown, organic rich SILT, little sand, Specific conductance (μS/cm) = 0.86; Temp. (°C) = 26.2; Turbidity (NTU) = 6.36; pH = 7.26; PID = 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>0.5-1.5</td>
<td>0134LN-0077</td>
<td>9/5/2018 17:20</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>1.5-2.5</td>
<td>0134LN-0078</td>
<td>9/5/2018 17:22</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>2.5-3</td>
<td>0134LN-0079</td>
<td>9/5/2018 17:25</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
<td>3-3.5</td>
<td>0134LN-0080</td>
<td>9/5/2018 17:26</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>3.5-4</td>
<td>0134LN-0081</td>
<td>9/5/2018 17:28</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>G</td>
<td>4-5</td>
<td>0134LN-0082</td>
<td>9/5/2018 17:32</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td>Station Location</td>
<td>Location Description/Rationale</td>
<td>Sub-location</td>
<td>Sample Depth* (feet)</td>
<td>Scribe Sample No/ DAS Sample No./ CLP Sample No.</td>
<td>Date and Time (hours)</td>
<td>Analysis</td>
<td>Sample Description</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>---</td>
<td>-----------------------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>UMB-C1</td>
<td>Grab sediment sample collected from an area within the Mother Brook upstream of the confluence of Mother Brook and the Neponset River, approximately 750 feet upstream of the Westinghouse Dam. Sample collected for PCB Congener analysis to determine the presence and level of any hazardous PCB substances within the Upstream segment of Mother Brook to document upstream reference/background levels for comparison purposes. North Latitude West Longitude</td>
<td>A</td>
<td>0-1</td>
<td>0134LN-0086</td>
<td>9/6/2018 9:40</td>
<td>Field PCBs</td>
<td>Sample was collected using a hand auger. Material described as: 0-1' black, organic rich SILT, little sand, trace fine-to-coarse gravel. 1-2' black organic rich SILT, some sand, trace gravel. 2-3' black Silt and CLAY, trace sand and organics. 3-4' black SILTY SAND, trace gravel, clay, and organics. Specific conductance (μS/cm) = 0.86; Temp. (°C) = 26.2; Turbidity (NTU) = 6.36; pH = 7.26; PID = 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>1-2</td>
<td>0134LN-0087</td>
<td>9/6/2018 9:43</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>2-3</td>
<td>0134LN-0088</td>
<td>9/6/2018 9:46</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>3-3.5</td>
<td>0134LN-0089</td>
<td>9/6/2018 9:55</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td>UMB-C2</td>
<td>Grab sediment sample collected from an area within the Mother Brook upstream of the confluence of Mother Brook and the Neponset River, approximately 1,200 feet upstream of the Centennial Dam. Sample collected for PCB Congener analysis to determine the presence and level of any hazardous PCB substances within the Upstream segment of Mother Brook to document upstream reference/background levels for comparison purposes. North Latitude West Longitude</td>
<td>A</td>
<td>0-1</td>
<td>0134LN-0090</td>
<td>9/6/2018 10:52</td>
<td>Field PCBs</td>
<td>Sample was collected using a hand auger collected in 6' of water. Material described as: 0-1' dark brown-to-black organic rich SILT, little sand, trace fine-to-coarse gravel. 1-2' dark brown-to-black organic rich SILT, some fine-to-coarse sand. 2-3' black organic rich SILT, some fine-to-coarse sand, little clay, trace fine-to-coarse gravel. Specific conductance (μS/cm) = 0.94; Temp. (°C) = 27.4; Turbidity (NTU) = 4.64; pH = 7.05; PID = 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>1-2</td>
<td>0134LN-0091</td>
<td>9/6/2018 10:54</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C (SD-10)</td>
<td>2-3</td>
<td>0134LN-0092/ D35484/ PA41S2/A41S2</td>
<td>9/6/2018 11:02</td>
<td>Field PCBs 209 CBCs TOC % solids</td>
<td></td>
</tr>
</tbody>
</table>
TABLE C-4

SEDIMENT/SOURCE SAMPLES

LOWER NEPONSET RIVER PCBS

BOSTON/MILTON, MASSACHUSETTS

4 THROUGH 6 SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (feet)</th>
<th>Scribe Sample No/ DAS Sample No./ CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNR-C1</td>
<td>Grab sediment sample collected from an area within the Upper Neponset River, located adjacent to the Martini Playground. Sample collected for PCB Congener analysis to determine the presence and level of any hazardous PCB substances within the Upper Neponset River to document upstream reference/background levels for comparison purposes. North Latitude West Longitude</td>
<td>A</td>
<td>0-1</td>
<td>0134LN-0093</td>
<td>9/6/2018 13:00</td>
<td>Field PCBs</td>
<td>Sample was collected using a hand auger collected in 6" of water. Material described as: 0-2' dark gray coarse-to-fine SAND. 1-2' light-to-medium gray coarse-to-fine SAND. 2-3' light-to-medium gray coarse-to-fine SAND. Specific conductance (μS/cm) = 0.71; Temp. (°C) = 25.8; Turbidity (NTU) = 4.36; pH = 6.74; PID = 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>1-2</td>
<td>0134LN-0094</td>
<td>9/6/2018 13:10</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>2-3</td>
<td>0134LN-0095</td>
<td>9/6/2018 13:15</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D (SD-08)</td>
<td>3-4</td>
<td>0134LN-0099/ D35482/ PA41S0/A41S0</td>
<td>9/6/2018 14:03</td>
<td>Field PCBs 209 CBCs TOC % solids</td>
<td></td>
</tr>
</tbody>
</table>

UNR-C2

Grab sediment sample collected from an area within the Upper Neponset River, located behind the Stop & Shop. Sample collected for PCB Congener analysis to determine the presence and level of any hazardous PCB substances within the Upper Neponset River to document upstream reference/background levels for comparison purposes. North Latitude West Longitude

<p>| A | 0-1 | 0134LN-0096 | 9/6/2018 13:51 | Field PCBs | Sample was collected using a hand auger collected in 12" of water. Material described as: 0-1' dark brown SILTY SAND, trace clay and organics. 1-2' dark brown SANDY SILT, trace clay and organics. 2-3' dark brown SILT, little fine-to-medium sand, trace clay and organics. 3-4' dark brown SILT, little fine-to-medium sand, little clay, trace organics. Specific conductance (μS/cm) = 0.77; Temp. (°C) = 25.6; Turbidity (NTU) = 4.03; pH = 6.95; PID = 0. Slight petroleum/oily odor. |
| B | 1-2 | 0134LN-0097 | 9/6/2018 13:55 | Field PCBs | |
| C | 2-3 | 0134LN-0098 | 9/6/2018 13:58 | Field PCBs | |
| D (SD-08) | 3-4 | 0134LN-0099/ D35482/ PA41S0/A41S0 | 9/6/2018 14:03 | Field PCBs 209 CBCs TOC % solids |</p>
<table>
<thead>
<tr>
<th>Station Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (feet)</th>
<th>Scribe Sample No/ DAS Sample No./ CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNR-C3</td>
<td>Grab sediment sample collected from an area within the Upper Neponset River, located approximately 1,000 feet upstream of Paul's Bridge. Sample collected for PCB Congener analysis to determine the presence and level of any hazardous PCB substances within the Upper Neponset River to document upstream reference/background levels for comparison purposes. North Latitude West Longitude</td>
<td>A (SD-09)</td>
<td>0-1</td>
<td>0134LN-0100/ D35483/ PA41S1/A41S1</td>
<td>9/6/2018 15:15</td>
<td>Field PCBs</td>
<td>209 CBCs TOC % solids</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B</td>
<td>1-2</td>
<td>0134LN-0101</td>
<td>9/6/2018 15:19</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C</td>
<td>2-3</td>
<td>0134LN-0102</td>
<td>9/6/2018 15:21</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D</td>
<td>3-4</td>
<td>0134LN-0103</td>
<td>9/6/2018 15:28</td>
<td>Field PCBs</td>
<td></td>
</tr>
<tr>
<td>BCA-C103</td>
<td>Field duplicate of BCA-C3D</td>
<td>D</td>
<td>3-3.8</td>
<td>0134LN-0083</td>
<td>9/4/2018 16:13</td>
<td>Field PCBs</td>
<td>See BCA-C1D.</td>
</tr>
</tbody>
</table>

Sample was collected using a hand auger collected in 18” of water. Material described as: 0-1’ brown-to-dark brown SILT, little clay, trace clay and fine-to-medium sand.

Specific conductance (μS/cm) = 0.71; Temp. (°C) = 25.6; Turbidity (NTU) = 4.26; pH = 6.75; PID = 0.
<table>
<thead>
<tr>
<th>Location</th>
<th>Location Description/Rationale</th>
<th>Sub-location</th>
<th>Sample Depth* (feet)</th>
<th>Scribe Sample No/ DAS Sample No./ CLP Sample No.</th>
<th>Date and Time (hours)</th>
<th>Analysis</th>
<th>Sample Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCA-C101</td>
<td>Field duplicate of BCA-C1A</td>
<td>A</td>
<td>0-1</td>
<td>0134LN-0084</td>
<td>9/4/2018 14:35</td>
<td>Field PCBs</td>
<td>See BCA-C1A</td>
</tr>
<tr>
<td>THD-C101</td>
<td>Field duplicate of THD-C1D</td>
<td>D</td>
<td>3-4</td>
<td>0134LN-0085</td>
<td>9/5/2018 13:03</td>
<td>Field PCBs</td>
<td>See THD-C1D</td>
</tr>
<tr>
<td>THD-C102</td>
<td>Field duplicate of THD-C2D</td>
<td>D</td>
<td>2-3</td>
<td>0134LN-0104</td>
<td>9/5/2018 13:45</td>
<td>Field PCBs</td>
<td>See THD-C2D</td>
</tr>
<tr>
<td>BCA-C105D</td>
<td>Field Duplicate of BCA-C5D</td>
<td>D (SD-12)</td>
<td>2.5-4</td>
<td>NA/ D3546/ PA41S4/A41S4</td>
<td>9/4/2018 17:40</td>
<td>Field PCBs</td>
<td>209 CBCs TOC % solids</td>
</tr>
</tbody>
</table>

Temp (°C) = Temperature (degrees Celsius)
Spec. Cond. (μS/cm) = Specific conductance (micro Siemens per centimeter)
NTU = Nephelometric Turbidity Units
ORP (mV) = Oxidation-Reduction Potential (milliVolts)
CLP = Contract Laboratory Program
DAS = Delivery of Analytical Services
CGI/O₂ (LEL/%) = Combustible Gas Indicator/Oxygen Meter (Lower Explosive Limit/Percent)
PID = Photoionization Detector
COC = Chain of Custody
ppm = parts per million
No. = Number
NR = Not Recorded.
* = Below the sediment/water interface.
" = inches.
' = feet.
NA = Not assigned

Analyses:
Field PCBs = Field Screening Polychlorinated biphenyls (EPA Region 1 SOP, EIASOP-FLDPCB3)
PCBs = PCBs Medium Level in Soils and Sediments (EPA Region 1 SOP, EIASOP-PESTSOIL4)
209 CBCs = Contract Laboratory Program (CLP) 209 Congeners (HRSM01.2 for PCB Congeners)
TOC = Total Organic Carbon (SW-846 9060/Lloyd Kahn)
% solids = Percent solids
ATTACHMENT D
LOWER NEPONSET RIVER PCBS
START ANALYTICAL RESULTS TABLES
Samples Collected from 13 to 17 November 2017

<p>| Table 1 | Data Summary Table, Aroclor Sediment Analysis, SDG A41G7 |
| Table 2 | Data Summary Table, Aroclor Sediment Analysis, SDG A41H3 |
| Table 3 | Data Summary Table, Aroclor Sediment Analysis, SDG A41K4 |
| Table 4 | Data Summary Table, Aroclor Sediment Analysis, SDG A41M8 |
| Table 5 | Data Summary Table, Total Organic Carbon Sediment Analysis |
| Table 6 | Data Summary Table, Total Organic Carbon Sediment Analysis |
| Table 7 | Data Summary Table, Total Organic Carbon Sediment Analysis |</p>
<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>MDL</th>
<th>CRQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aroclor-1016</td>
<td>1.7</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>64 U</td>
<td>72 U^{J1}</td>
</tr>
<tr>
<td>Aroclor-1221</td>
<td>2.2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>64 U</td>
<td>72 U^{J1}</td>
</tr>
<tr>
<td>Aroclor-1232</td>
<td>0.87</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>64 U</td>
<td>72 U^{J1}</td>
</tr>
<tr>
<td>Aroclor-1242</td>
<td>1.2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>64 U</td>
<td>72 U^{J1}</td>
</tr>
<tr>
<td>Aroclor-1248</td>
<td>1.6</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>64 U</td>
<td>72 U^{J1}</td>
</tr>
<tr>
<td>Aroclor-1254</td>
<td>1.6</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>64 U</td>
<td>72 U^{J1}</td>
</tr>
<tr>
<td>Aroclor-1260</td>
<td>2.2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>64 U</td>
<td>72 U^{J1}</td>
</tr>
<tr>
<td>Aroclor-1268</td>
<td>1.3</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>64 U</td>
<td>72 U^{J1}</td>
</tr>
<tr>
<td>Aroclor-1268</td>
<td>1.2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>64 U</td>
<td>72 U^{J1}</td>
</tr>
</tbody>
</table>

S3VEM DATA VALIDATION
QUALIFIER COMMENTS:

DILUTION FACTOR	1.0	1.0	1.0	1.0	1.0	1.0
SAMPLE WEIGHT (GRAMS)	30.0	30.1	30.1	30.1	30.1	30.1
% SOLID	35.7	45.8	50.9	46.0	38.8	33.9

NOTES:
Results are reported in micrograms per kilogram (µg/kg).

MDL = Method Detection Limit
CRQL = Contract Required Quantitation Limit

All results are reported on a Dry Weight Basis.
Aroclor Sediment Analysis

November 2017

<table>
<thead>
<tr>
<th>SAMPLE IDENTIFIER</th>
<th>STATION LOCATION</th>
<th>LABORATORY NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-14A</td>
<td>SD-15</td>
<td>SD-16</td>
</tr>
<tr>
<td>SD-17</td>
<td>SD-18</td>
<td>SD-19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>MDL</th>
<th>CRQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aroclor-1016</td>
<td>1.7</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1221</td>
<td>2.2</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1232</td>
<td>0.87</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1242</td>
<td>1.2</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1248</td>
<td>1.6</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1260</td>
<td>2.2</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1262</td>
<td>1.3</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1268</td>
<td>1.2</td>
<td>33</td>
</tr>
</tbody>
</table>

Notes:
- Values bolded and shaded exceed the sample adjusted CRQL.
- MDL = Method Detection Limit.
- CRQL = Contract Required Quantitation Limit.
- All results are reported on a Dry Weight Basis.

S3VEM Data Validation

Qualifier Comments:
- **U** = Values not detected above the MDL are reported at the sample adjusted CRQL with a "U" flag, per the CLP Statement of Work.
- **J** = Results that are greater than the MDL but less than the CRQL are flagged (J) as estimated values with no superscripts.
- **UJ** = Non-Detect results are estimated due to surrogate recoveries below the lower recovery limit.
- **J+** = Positive detect results are estimated with a high bias (J+) due to surrogate recoveries exceeding the upper recovery limit.
- **J3** = %D between dual-column results was ≥25.

Notes:
- Results are reported in micrograms per kilogram (µg/kg).
- MDL = Method Detection Limit.
- CRQL = Contract Required Quantitation Limit.
- All results are reported on a Dry Weight Basis.
Aroclor Sediment Analysis

November 2017

Data Summary Table 1

<table>
<thead>
<tr>
<th>Compound</th>
<th>MDL</th>
<th>CRQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aroclor-1016</td>
<td>1.7</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>58 U</td>
<td>56 U</td>
</tr>
<tr>
<td>Aroclor-1221</td>
<td>2.2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>58 U</td>
<td>56 U</td>
</tr>
<tr>
<td>Aroclor-1232</td>
<td>0.87</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>58 U</td>
<td>56 U</td>
</tr>
<tr>
<td>Aroclor-1242</td>
<td>1.2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>58 U</td>
<td>56 U</td>
</tr>
<tr>
<td>Aroclor-1248</td>
<td>1.6</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>58 U</td>
<td>56 U</td>
</tr>
<tr>
<td>Aroclor-1254</td>
<td>1.6</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>49 J</td>
<td>70 J</td>
</tr>
<tr>
<td>Aroclor-1260</td>
<td>2.2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>58 U</td>
<td>56 U</td>
</tr>
<tr>
<td>Aroclor-1262</td>
<td>1.3</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>58 U</td>
<td>56 U</td>
</tr>
<tr>
<td>Aroclor-1268</td>
<td>1.2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>58 U</td>
<td>56 U</td>
</tr>
</tbody>
</table>

Dilution Factor

<table>
<thead>
<tr>
<th></th>
<th>1.0</th>
<th>1.0</th>
<th>1.0</th>
<th>1.0</th>
<th>1.0</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Sampled</td>
<td>11/15/2017</td>
<td>11/15/2017</td>
<td>11/16/2017</td>
<td>11/16/2017</td>
<td>11/16/2017</td>
<td>11/16/2017</td>
</tr>
<tr>
<td>Date Extracted</td>
<td>11/20/2017</td>
<td>11/20/2017</td>
<td>11/20/2017</td>
<td>11/20/2017</td>
<td>11/20/2017</td>
<td>11/20/2017</td>
</tr>
</tbody>
</table>

Sample Weight (Grams)

<table>
<thead>
<tr>
<th></th>
<th>30.1</th>
<th>30.0</th>
<th>30.0</th>
<th>30.1</th>
<th>30.1</th>
<th>30.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Solid</td>
<td>56.4</td>
<td>59.5</td>
<td>79.2</td>
<td>73.9</td>
<td>61.0</td>
<td>39.5</td>
</tr>
</tbody>
</table>

S3VEM Data Validation

Qualifiers:
- **U:** Values not detected above the MDL are reported at the sample adjusted CRQL with a "U" flag, per the CLP Statement of Work.
- **J:** Results that are greater than the MDL but less than the CRQL are flagged (J) as estimated values with no superscripts.
- **UJ:** Non-Detect results are estimated due to surrogate recoveries below the lower recovery limit.
- **J+:** Positive detect results are estimated with a high bias (J+) due to surrogate recoveries exceeding the upper recovery limit.
- **J^2:** %D between dual-column results was ≥25.

NOTES:
- Results are reported in micrograms per kilogram (µg/kg).
- MDL = Method Detection Limit
- CRQL = Contract Required Quantitation Limit
- All results are reported on a Dry Weight Basis.
<table>
<thead>
<tr>
<th>CLP SAMPLE NUMBER</th>
<th>A41L3</th>
<th>A41M3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE IDENTIFIER</td>
<td>D35240</td>
<td>D35250</td>
</tr>
<tr>
<td>STATION LOCATION</td>
<td>SD-27A</td>
<td>SD-35</td>
</tr>
<tr>
<td>LABORATORY NUMBER</td>
<td>I6545-21</td>
<td>I6545-22</td>
</tr>
<tr>
<td>COMPOUND</td>
<td>MDL</td>
<td>CRQL</td>
</tr>
<tr>
<td>Aroclor-1016</td>
<td>1.7</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1221</td>
<td>2.2</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1232</td>
<td>0.87</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1242</td>
<td>1.2</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1248</td>
<td>1.6</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1254</td>
<td>1.6</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1260</td>
<td>2.2</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1262</td>
<td>1.3</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1268</td>
<td>1.2</td>
<td>33</td>
</tr>
<tr>
<td>DILUTION FACTOR</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>DATE SAMPLED</td>
<td>11/16/2017</td>
<td>11/16/2017</td>
</tr>
<tr>
<td>DATE EXTRACTED</td>
<td>11/20/2017</td>
<td>11/20/2017</td>
</tr>
<tr>
<td>DATE ANALYZED</td>
<td>11/27/2017</td>
<td>11/27/2017</td>
</tr>
<tr>
<td>SAMPLE WEIGHT (GRAMS)</td>
<td>50.1</td>
<td>30.1</td>
</tr>
<tr>
<td>% SOLID</td>
<td>19.5</td>
<td>58.2</td>
</tr>
</tbody>
</table>

S3VEM DATA VALIDATION
QUALIFIER COMMENTS:
U = Values not detected above the MDL are reported at the sample adjusted CRQL with a "U" flag, per the CLP Statement of Work.
J = Results that are greater than the MDL but less than the CRQL are flagged (J) as estimated values with no superscripts.
UJ1 = Non-Detect results are estimated due to surrogate recoveries below the lower recovery limit.
J+2 = Positive detect results are estimated with a high bias (J+) due to surrogate recoveries exceeding the upper recovery limit.

NOTES:
Results are reported in micrograms per kilogram (µg/kg).
MDL = Method Detection Limit
CRQL = Contract Required Quantitation Limit
All results are reported on a Dry Weight Basis.
Data Summary Table 2

AROCOR SEDIMENT ANALYSIS
NOVEMBER 2017

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>MDL</th>
<th>CRQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aroclor-1016</td>
<td>1.7</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1221</td>
<td>2.2</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1232</td>
<td>0.87</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1242</td>
<td>1.2</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1248</td>
<td>1.6</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1254</td>
<td>1.6</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1260</td>
<td>2.2</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1262</td>
<td>1.3</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1268</td>
<td>1.2</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DILUTION FACTOR</th>
<th>1</th>
<th>1 / 5*</th>
<th>1.0</th>
<th>1</th>
<th>1.0</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE EXTRACTED</td>
<td>11/16/2017</td>
<td>11/16/2017</td>
<td>11/16/2017</td>
<td>11/16/2017</td>
<td>11/16/2017</td>
<td>11/16/2017</td>
</tr>
<tr>
<td>SAMPLE WEIGHT (GRAMS)</td>
<td>30.1</td>
<td>30.1</td>
<td>30.1</td>
<td>30.1</td>
<td>30.2</td>
<td>30.0</td>
</tr>
<tr>
<td>% SOLID</td>
<td>84.2</td>
<td>40.8</td>
<td>84.5</td>
<td>83.0</td>
<td>73.0</td>
<td>55.0</td>
</tr>
</tbody>
</table>

S3VEM DATA VALIDATION

QUALIFIER COMMENTS:
* U = Values not detected above the MDL are reported at the sample adjusted CRQL with a "U" flag, per the CLP Statement of Work.
* J = Results that are greater than the MDL but less than the CRQL are flagged (J) as estimated values with no superscripts.
* J² = Positive and non-detect results are estimated (J/−UJ) due to surrogate recoveries below the lower recovery limit.
* J³ = Positive field duplicate results are estimated (J) due to RPD greater than 50%.
* J⁴ = Positive and non-detect field duplicate results are estimated (J/UJ) due to surrogate recoveries below the lower recovery limit.
* J⁵ = %D between dual-column results was ≥25.
* Values bolded and shaded exceed the sample adjusted CRQL.

NOTES:

Results are reported in micrograms per kilogram (µg/kg).

MDL = Method Detection Limit
CRQL = Contract Required Quantitation Limit
All results are reported on a Dry Weight Basis.

* Reported value is from diluted analysis.
Data Summary Table 2

Aroclor Sediment Analysis

November 2017

<table>
<thead>
<tr>
<th>Compound</th>
<th>MDL</th>
<th>CRQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aroclor-1016</td>
<td>1.7</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1221</td>
<td>2.2</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1232</td>
<td>0.87</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1242</td>
<td>1.2</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1248</td>
<td>1.6</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1254</td>
<td>1.6</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1260</td>
<td>2.2</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1262</td>
<td>1.3</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1268</td>
<td>1.2</td>
<td>33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Identifier</th>
<th>Station Location</th>
<th>Laboratory Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A41H9</td>
<td>SD-11</td>
<td>i6505-09</td>
</tr>
<tr>
<td>A41J2</td>
<td>SD-12</td>
<td>i6505-10</td>
</tr>
<tr>
<td>A41J3</td>
<td>SD-13</td>
<td>i6505-11</td>
</tr>
<tr>
<td>A41M7</td>
<td>SD-39</td>
<td>i6505-12</td>
</tr>
<tr>
<td>A41M9</td>
<td>SD-41</td>
<td>i6505-13</td>
</tr>
<tr>
<td>A41N0</td>
<td>SD-42</td>
<td>i6505-14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dilution Factor</th>
<th>Date Sampled</th>
<th>Date Extracted</th>
<th>Date Analyzed</th>
<th>Sample Weight (Grams)</th>
<th>% Solid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11/14/2017</td>
<td>11/16/2017</td>
<td>11/24/2017</td>
<td>30.1</td>
<td>61.1</td>
</tr>
<tr>
<td></td>
<td>11/14/2017</td>
<td>11/16/2017</td>
<td>11/21/2017</td>
<td>30.1</td>
<td>58.7</td>
</tr>
<tr>
<td></td>
<td>11/13/2017</td>
<td>11/16/2017</td>
<td>11/21/2017</td>
<td>30.0</td>
<td>68.5</td>
</tr>
<tr>
<td></td>
<td>11/14/2017</td>
<td>11/16/2017</td>
<td>11/21/2017</td>
<td>30.1</td>
<td>44.4</td>
</tr>
<tr>
<td></td>
<td>11/14/2017</td>
<td>11/16/2017</td>
<td>11/21/2017</td>
<td>30.1</td>
<td>82.0</td>
</tr>
</tbody>
</table>

S3VEM Data Validation

Qualifier Comments:

- U = Values not detected above the MDL are reported at the sample adjusted CRQL with a "U" flag, per the CLP Statement of Work.
- J = Results that are greater than the MDL but less than the CRQL are flagged (J) as estimated values with no superscripts.
- J1 = Positive and non-detect results are estimated (J/UJ) due to surrogate recoveries below the lower recovery limit.
- J2 = Positive field duplicate results are estimated (J) due to RPD greater than 50%.
- J3 = Positive field duplicate results are estimated (J/UJ) since one result was non-detected and one result was greater than 2X the CRQL.
- J4 = %D between dual-column results was ≥25.

Values bolded and shaded exceed the sample adjusted CRQL.

Notes:

- Results are reported in micrograms per kilogram (µg/kg).
- MDL = Method Detection Limit
- CRQL = Contract Required Quantitation Limit
- All results are reported on a Dry Weight Basis.
- * Reported value is from diluted analysis.
Aroclor SEDIMENT ANALYSIS

NOVEMBER 2017

<table>
<thead>
<tr>
<th>CLP SAMPLE NUMBER</th>
<th>A41N1</th>
<th>A41P0</th>
<th>A41P1</th>
<th>A41P2</th>
<th>A41P3</th>
<th>A41P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATION LOCATION</td>
<td>SD-43</td>
<td>SD-08A</td>
<td>SD-12A</td>
<td>SD-100A</td>
<td>SD-100B</td>
<td>SD-100C</td>
</tr>
<tr>
<td>LABORATORY NUMBER</td>
<td>I6505-15</td>
<td>I6505-18</td>
<td>I6505-19</td>
<td>I6505-20</td>
<td>I6505-21</td>
<td>I6505-22</td>
</tr>
<tr>
<td>COMPOUND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroclor-1016</td>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDL</td>
<td></td>
<td>38 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRQL</td>
<td></td>
<td>58 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroclor-1221</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDL</td>
<td></td>
<td>38 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRQL</td>
<td></td>
<td>58 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroclor-1232</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDL</td>
<td></td>
<td>38 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRQL</td>
<td></td>
<td>58 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroclor-1242</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDL</td>
<td></td>
<td>38 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRQL</td>
<td></td>
<td>58 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroclor-1248</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDL</td>
<td></td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRQL</td>
<td></td>
<td>270</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroclor-1254</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDL</td>
<td></td>
<td>38 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRQL</td>
<td></td>
<td>58 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroclor-1260</td>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDL</td>
<td></td>
<td>38 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRQL</td>
<td></td>
<td>58 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroclor-1262</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDL</td>
<td></td>
<td>38 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRQL</td>
<td></td>
<td>58 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroclor-1268</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDL</td>
<td></td>
<td>38 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRQL</td>
<td></td>
<td>58 U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DILUTION FACTOR	1.0	1.0	1 / 4 *	1.0	1.0	1.0
DATE SAMPLED	11/14/2017	11/13/2017	11/14/2017	11/14/2017	11/14/2017	11/14/2017
DATE EXTRACTED	11/16/2017	11/16/2017	11/16/2017	11/22/2017	11/16/2017	11/16/2017
SAMPLE WEIGHT (GRAMS)	30.1	30.1	30.0	30.1	30.1	30.1
% SOLID	86.3	56.8	55.3	41.8	35.3	40.0

S3VEM DATA VALIDATION

QUALIFIER COMMENTS:

- **U** = Values not detected above the MDL are reported at the sample adjusted CRQL with a "U" flag, per the CLP Statement of Work.
- **J** = Results that are greater than the MDL but less than the CRQL are flagged (J) as estimated values with no superscripts.
- **J1** = Positive field duplicate results are estimated (J) due to surrogate recoveries below the lower recovery limit.
- **J2** = Positive field duplicate results are estimated (J) due to RPD greater than 50%.
- **J3** = Positive and non-detect field duplicate results are estimated (J/UJ) since one result was non-detected and one result was greater than 2X the CRQL.
- **J4** = %D between dual-column results was ≥25.

NOTES:

- Results are reported in micrograms per kilogram (µg/kg).
- MDL = Method Detection Limit
- CRQL = Contract Required Quantitation Limit
- All results are reported on a Dry Weight Basis.

* Reported value is from diluted analysis.
Aroclor Sediment Analysis

Site: Lower Neponset River PCBs
Case: 47280
SDG: A41K4
Laboratory: Chemtech Consulting Group
Data Summary Table 3
November 2017

<table>
<thead>
<tr>
<th>CLP Sample Number</th>
<th>Sample Identifier</th>
<th>Station Location</th>
<th>Laboratory Number</th>
<th>Compound</th>
<th>MDL</th>
<th>CRQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A41K4</td>
<td>D35231</td>
<td>SD-22</td>
<td>i6547-01</td>
<td>Aroclor-1016</td>
<td>1.7</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58 U</td>
<td>94 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1221</td>
<td>2.2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58 U</td>
<td>94 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1232</td>
<td>0.87</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58 U</td>
<td>94 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1242</td>
<td>1.2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58 U</td>
<td>94 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1248</td>
<td>1.6</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58 U</td>
<td>94 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1254</td>
<td>1.6</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63 J4</td>
<td>94 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1260</td>
<td>2.2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58 U</td>
<td>94 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1262</td>
<td>1.3</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58 U</td>
<td>94 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1268</td>
<td>1.2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>58 U</td>
<td>94 U</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DILUTION FACTOR</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DATE SAMPLED</td>
<td>11/15/2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DATE EXTRACTED</td>
<td>11/16/2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DATE ANALYZED</td>
<td>11/21/2017</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAMPLE WEIGHT (GRAMS)</td>
<td>30.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>% SOLID</td>
<td>56.5</td>
<td></td>
</tr>
</tbody>
</table>

S3VEM Data Validation Qualifier Comments:
- **U** = Values not detected above the MDL are reported at the sample adjusted CRQL with a "U" flag, per the CLP Statement of Work.
- **J** = Results that are greater than the MDL but less than the CRQL are flagged (J) as estimated values with no superscripts.
- **UJ** = Non-detect results are estimated due to surrogate recoveries below the lower recovery limit.
- **J4** = Results are reported in micrograms per kilogram (µg/kg).
- **J^2** = Positive results are estimated (J-) due to surrogate recoveries below the lower recovery limit.
- **J^3** = Non-detect results are rejected (R) due to Matrix Spike/Matrix Spike Duplicate recovery below the lower limit for Aroclor-1260.
- **J^4** = Positive results are estimated (J) due to the field duplicate RPD exceeding the upper limit.
- **J^5** = %D between dual-column results was ≥25.
- **J^6** = Non-detect results are estimated (UJ) due to percent solids > 10% but <30%. The amount of soil extracted was not increased.
- **R** = Non-detect results are rejected.
- **MDL** = Method Detection Limit
- **CRQL** = Contract Required Quantitation Limit
- **%D** = %D between dual-column results was ≥25.

NOTES:
- Results are reported on a Dry Weight Basis.
- * Reported value is from diluted analysis.

Sample Weight (Grams):
- 30.0
- 50.0
- 30.1
- 30.1
- 30.0

% Solid:
- 56.5
- 21.0
- 22.9
- 69.5
- 38.3
- 32.9

Sample Location:
- SD-22
- SD-28
- SD-29
- SD-30
- SD-32
- SD-32A

Laboratory Number:
- i6547-01
- i6547-02
- i6547-03
- i6547-04
- i6547-05
- i6547-06
Data Summary Table 3

Aroclor Sediment Analysis

November 2017

<table>
<thead>
<tr>
<th>COMPUND</th>
<th>MDL</th>
<th>CRQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aroclor-1016</td>
<td>1.7</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>59 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>43 U</td>
<td></td>
</tr>
<tr>
<td>Aroclor-1221</td>
<td>2.2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>59 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>43 U</td>
<td></td>
</tr>
<tr>
<td>Aroclor-1232</td>
<td>0.87</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>59 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>43 U</td>
<td></td>
</tr>
<tr>
<td>Aroclor-1242</td>
<td>1.2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>59 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>43 U</td>
<td></td>
</tr>
<tr>
<td>Aroclor-1248</td>
<td>1.6</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>59 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>43 U</td>
<td></td>
</tr>
<tr>
<td>Aroclor-1254</td>
<td>1.6</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>59 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>59 J-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 J-23</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2100 *</td>
<td></td>
</tr>
<tr>
<td>Aroclor-1260</td>
<td>2.2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>59 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>43 U</td>
<td></td>
</tr>
<tr>
<td>Aroclor-1262</td>
<td>1.3</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>59 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>43 U</td>
<td></td>
</tr>
<tr>
<td>Aroclor-1268</td>
<td>1.2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>59 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>140 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 UJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>43 U</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DILUTION FACTOR</th>
<th>1.0</th>
<th>1.0</th>
<th>1.0</th>
<th>1.0</th>
<th>1.0</th>
<th>1.0 / 5.0*</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE SAMPLED</td>
<td>11/16/2017</td>
<td>11/16/2017</td>
<td>11/16/2017</td>
<td>11/16/2017</td>
<td>11/16/2017</td>
<td>11/15/2017</td>
</tr>
<tr>
<td>SAMPLE WEIGHT (GRAMS)</td>
<td>30.1</td>
<td>30.0</td>
<td>50.0</td>
<td>30.1</td>
<td>30.1</td>
<td>30.1</td>
</tr>
<tr>
<td>% SOLID</td>
<td>55.7</td>
<td>31.5</td>
<td>14.4</td>
<td>31.9</td>
<td>31.6</td>
<td>75.9</td>
</tr>
</tbody>
</table>

S3VEM DATA VALIDATION

QUALIFIER COMMENTS:

- **U** = Values not detected above the MDL are reported at the sample adjusted CRQL with a "U" flag, per the CLP Statement of Work.
- **J** = Results that are greater than the MDL but less than the CRQL are flagged (J) as estimated values with no superscripts.
- **UJ** = Non-detect results are estimated due to surrogate recoveries below the lower recovery limit.
- **J-** = Positive results are estimated (J-) due to surrogates recoveries below the lower recovery limit.
- **R** = Non-detect results are rejected (R) due to Matrix Spike/Matrix Spike Duplicate recovery below the lower limit for Aroclor-1260.
- **J^+** = Positive results are estimated (J^+) due to the field duplicate RPD exceeding the upper limit.
- **J^2** = %D between dual-column results was ≥25.
- **J^3** = Non-detect results are estimated (UJ) due to percent solids > 10% but <30%. The amount of soil extracted was not increased. Values bolded and shaded exceed the sample adjusted CRQL.

NOTES:

- Results are reported in micrograms per kilogram (µg/kg).
- MDL = Method Detection Limit
- CRQL = Contract Required Quantitation Limit
- All results are reported on a Dry Weight Basis.
- * Reported value is from diluted analysis.
Aroclor Sediment Analysis

November 2017

<table>
<thead>
<tr>
<th>SAMPLE IDENTIFIER</th>
<th>STATION LOCATION</th>
<th>LABORATORY NUMBER</th>
<th>COMPOUND</th>
<th>MDL</th>
<th>CRQL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1016</td>
<td>1.7</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1221</td>
<td>2.2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1232</td>
<td>0.87</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1242</td>
<td>1.2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1248</td>
<td>1.6</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1254</td>
<td>1.6</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1260</td>
<td>2.2</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1262</td>
<td>1.3</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1268</td>
<td>1.2</td>
<td>33</td>
</tr>
</tbody>
</table>

DILUTION FACTOR:

- 1.0

DATE SAMPLED:

- 11/15/2017
- 11/15/2017
- 11/15/2017
- 11/15/2017
- 11/15/2017
- 11/16/2017

DATE EXTRACTED:

- 11/21/2017
- 11/21/2017
- 11/21/2017
- 11/21/2017
- 11/21/2017
- 11/21/2017

DATE ANALYZED:

- 11/22/2017
- 11/22/2017
- 11/22/2017
- 11/22/2017
- 11/22/2017
- 11/22/2017

SAMPLE WEIGHT (GRAMS):

- 30.1
- 30.0
- 30.0
- 30.1
- 30.0
- 50.1

% SOLID:

- 46.4
- 59.8
- 73.5
- 54.9
- 78.2
- 29.1

S3VEM DATA VALIDATION QUALIFIER COMMENTS:

- **U** = Values not detected above the MDL are reported at the sample adjusted CRQL with a "U" flag, per the CLP Statement of Work.
- **J** = Results that are greater than the MDL but less than the CRQL are flagged (J) as estimated values with no superscripts.
- **UJ** = Non-detect results are estimated due to surrogate recoveries below the lower recovery limit.
- **J** = Positive results are estimated (J) due to the field duplicate RPD exceeding the upper limit.
- **R** = Non-detect results are rejected (R) due to Matrix SpikeDuplicate recovery below the lower limit for Aroclor-1260.

NOTES:

- Results are reported in micrograms per kilogram (µg/kg).
- MDL = Method Detection Limit
- CRQL = Contract Required Quantitation Limit
- All results are reported on a Dry Weight Basis.
- * Reported value is from diluted analysis.
Aroclor Sediment Analysis

November 2017

Sample Identifier

<table>
<thead>
<tr>
<th>Station Location</th>
<th>Laboratory Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-40A</td>
<td>i6549-01</td>
</tr>
<tr>
<td>SD-26B</td>
<td>i6549-07</td>
</tr>
<tr>
<td>SD-36A</td>
<td>i6549-08</td>
</tr>
<tr>
<td>SD-36B</td>
<td>i6549-09</td>
</tr>
</tbody>
</table>

Aroclor SEDIMENT ANALYSIS

<table>
<thead>
<tr>
<th>Compound</th>
<th>MDL</th>
<th>CRQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aroclor-1016</td>
<td>1.7</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1221</td>
<td>2.2</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1232</td>
<td>0.87</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1242</td>
<td>1.2</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1248</td>
<td>1.6</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1254</td>
<td>1.6</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1260</td>
<td>2.2</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1262</td>
<td>1.3</td>
<td>33</td>
</tr>
<tr>
<td>Aroclor-1268</td>
<td>1.2</td>
<td>33</td>
</tr>
</tbody>
</table>

Dilution Factor

<table>
<thead>
<tr>
<th>Date Sampled</th>
<th>Date Extracted</th>
<th>Date Analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/15/2017</td>
<td>11/16/2017</td>
<td>11/16/2017</td>
</tr>
<tr>
<td>11/22/2017</td>
<td>11/22/2017</td>
<td>11/28/2017</td>
</tr>
</tbody>
</table>

Sample Weight (Grams)

<table>
<thead>
<tr>
<th>% Solid</th>
</tr>
</thead>
<tbody>
<tr>
<td>59.5</td>
</tr>
<tr>
<td>30.1</td>
</tr>
<tr>
<td>30.1</td>
</tr>
<tr>
<td>36.5</td>
</tr>
<tr>
<td>24.8</td>
</tr>
</tbody>
</table>

S3VEM Data Validation

- **QUALIFIER COMMENTS:**
 - **U** = Values not detected above the MDL are reported at the sample adjusted CRQL with a "U" flag, per the CLP Statement of Work.
 - **J** = Results that are greater than the MDL but less than the CRQL are flagged (J) as estimated values with no superscripts.
 - **UJ** = Non-detect results are estimated due to surrogate recoveries below the lower recovery limit.
 - **UJ** = Non-detect results are estimated (UJ) due to percent solids > 10% but <30%. The amount of soil extracted was not increased.
 - **MDL** = Method Detection Limit
 - **CRQL** = Contract Required Quantitation Limit
 - **All results are reported on a Dry Weight Basis.**
 - **Values bolded and shaded exceed the sample adjusted CRQL.**

NOTES:

- Results are reported in micrograms per kilogram (µg/kg).
- *Reported value is from diluted analysis.*
<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>STATION LOCATION</th>
<th>LABORATORY NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>D35204</td>
<td>SD-01</td>
<td>180-72665-1</td>
</tr>
<tr>
<td>D35205</td>
<td>SD-02</td>
<td>180-72665-2</td>
</tr>
<tr>
<td>D35208</td>
<td>SD-03</td>
<td>180-72665-3</td>
</tr>
<tr>
<td>D35209</td>
<td>SD-04</td>
<td>180-72665-4</td>
</tr>
<tr>
<td>D35221</td>
<td>SD-14</td>
<td>180-72665-5</td>
</tr>
<tr>
<td>D35222</td>
<td>SD-14B</td>
<td>180-72665-6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>MDL</th>
<th>CRQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Organic Carbon (TOC)</td>
<td>746</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>160,000</td>
<td>J²</td>
</tr>
<tr>
<td></td>
<td>100,000</td>
<td>J²</td>
</tr>
<tr>
<td></td>
<td>98,000</td>
<td>J²</td>
</tr>
<tr>
<td></td>
<td>74,000</td>
<td>J²</td>
</tr>
<tr>
<td></td>
<td>95,000</td>
<td>J²</td>
</tr>
<tr>
<td></td>
<td>97,000</td>
<td>J²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DILUTION FACTOR</th>
<th>DATE SAMPLED</th>
<th>DATE ANALYZED</th>
<th>% SOLID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/28/2017</td>
<td>31.7</td>
</tr>
<tr>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/28/2017</td>
<td>28.1</td>
</tr>
<tr>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/28/2017</td>
<td>49.3</td>
</tr>
<tr>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/28/2017</td>
<td>47.3</td>
</tr>
<tr>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/28/2017</td>
<td>37.9</td>
</tr>
<tr>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/28/2017</td>
<td>50</td>
</tr>
</tbody>
</table>

S3VM DATA VALIDATION
QUALIFIER COMMENTS:
U = Values not detected above the MDL are reported at the sample adjusted CRQL with a "U" flag, per the CLP Statement of Work.
J = Results that are greater than the MDL but less than the CRQL are flagged (J) as estimated values with no superscripts.
J¹ = Result is estimated (J) due to analysis out of holding time.
J² = Result is estimated (J) due to laboratory duplicate RPD greater than 20%.

NOTES:
Results are reported in milligrams per kilogram (mg/kg).
MDL = Method Detection Limit.
RL = Reporting Limit Limit.
All results are reported on a Dry Weight Basis.
Total Organic Carbon Sediment Analysis

Data Summary Table 5

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Station Location</th>
<th>Laboratory Number</th>
<th>Compound</th>
<th>MDL</th>
<th>CRQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>D35223</td>
<td>SD-14A</td>
<td>180-72665-7</td>
<td>Total Organic Carbon (TOC)</td>
<td>746</td>
<td>1,000</td>
</tr>
<tr>
<td>D35224</td>
<td>SD-15</td>
<td>180-72665-8</td>
<td>120,000 J²</td>
<td>80,000 J²</td>
<td>43,000 J²</td>
</tr>
<tr>
<td>D35225</td>
<td>SD-16</td>
<td>180-72665-9</td>
<td>7,800 J²</td>
<td>7,800 J²</td>
<td>29,000 J²</td>
</tr>
<tr>
<td>D35226</td>
<td>SD-17</td>
<td>180-72665-10</td>
<td>21,000 J²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D35227</td>
<td>SD-18</td>
<td>180-72665-11</td>
<td>21,000 J²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D35228</td>
<td>SD-19</td>
<td>180-72665-12</td>
<td>21,000 J²</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dilution Factor</th>
<th>Date Sampled</th>
<th>Date Analyzed</th>
<th>% Solid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/28/2017</td>
<td>31.7</td>
</tr>
<tr>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/28/2017</td>
<td>43.2</td>
</tr>
<tr>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/28/2017</td>
<td>57.6</td>
</tr>
<tr>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/28/2017</td>
<td>59.5</td>
</tr>
<tr>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/28/2017</td>
<td>56.2</td>
</tr>
<tr>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/28/2017</td>
<td>56.7</td>
</tr>
</tbody>
</table>

S3VM Data Validation

Qualifier Comments:
- U = Values not detected above the MDL are reported at the sample adjusted CRQL with a "U" flag, per the CLP Statement of Work.
- J = Results that are greater than the MDL but less than the CRQL are flagged (J) as estimated values with no superscripts.
- J¹ = Result is estimated (J) due to analysis out of holding time.
- J² = Result is estimated (J) due to laboratory duplicate RPD greater than 20%.

Notes:
- Results are reported in milligrams per kilogram (mg/kg).
- MDL = Method Detection Limit.
- RL = Reporting Limit Limit.
- All results are reported on a Dry Weight Basis.
TOTAL ORGANIC CARBON SEDIMENT ANALYSIS

SITE: LOWER NEPONSET RIVER PCBs
CASE: 0906F
SDG: D35204
LABORATORY: EARTH TOXICS, INC.

DATA SUMMARY TABLE 5

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>STATION LOCATION</th>
<th>LABORATORY NUMBER</th>
<th>COMPOUND</th>
<th>MDL</th>
<th>CRQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>D35230</td>
<td>SD-21</td>
<td>180-72665-13</td>
<td>Total Organic Carbon (TOC)</td>
<td>746</td>
<td>1,000</td>
</tr>
<tr>
<td>D35232</td>
<td>SD-23</td>
<td>180-72665-14</td>
<td></td>
<td>34,000</td>
<td>J²</td>
</tr>
<tr>
<td>D35233</td>
<td>SD-24</td>
<td>180-72665-15</td>
<td></td>
<td>63,000</td>
<td>J²</td>
</tr>
<tr>
<td>D35236</td>
<td>SD-25</td>
<td>180-72665-16</td>
<td></td>
<td>4,900</td>
<td>J²</td>
</tr>
<tr>
<td>D35237</td>
<td>SD-26</td>
<td>180-72665-17</td>
<td></td>
<td>95,000</td>
<td>J²</td>
</tr>
<tr>
<td>D35238</td>
<td>SD-27</td>
<td>180-72665-18</td>
<td></td>
<td>44,000</td>
<td>J²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total Organic Carbon (TOC)</td>
<td>92,000</td>
<td>J²</td>
</tr>
</tbody>
</table>

DILUTION FACTOR

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>STATION LOCATION</th>
<th>LABORATORY NUMBER</th>
<th>DILUTION FACTOR</th>
<th>DATE SAMPLED</th>
<th>DATE ANALYZED</th>
<th>% SOLID</th>
</tr>
</thead>
<tbody>
<tr>
<td>D35230</td>
<td>SD-21</td>
<td>180-72665-13</td>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/28/2017</td>
<td>58.4</td>
</tr>
<tr>
<td>D35232</td>
<td>SD-23</td>
<td>180-72665-14</td>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/30/2017</td>
<td>51.5</td>
</tr>
<tr>
<td>D35233</td>
<td>SD-24</td>
<td>180-72665-15</td>
<td>1.0</td>
<td>11/16/2017</td>
<td>11/30/2017</td>
<td>79.2</td>
</tr>
<tr>
<td>D35236</td>
<td>SD-25</td>
<td>180-72665-16</td>
<td>1.0</td>
<td>11/16/2017</td>
<td>11/30/2017</td>
<td>43.3</td>
</tr>
<tr>
<td>D35237</td>
<td>SD-26</td>
<td>180-72665-17</td>
<td>1.0</td>
<td>11/16/2017</td>
<td>11/30/2017</td>
<td>65.2</td>
</tr>
<tr>
<td>D35238</td>
<td>SD-27</td>
<td>180-72665-18</td>
<td>1.0</td>
<td>11/16/2017</td>
<td>11/30/2017</td>
<td>29.2</td>
</tr>
</tbody>
</table>

QUALIFIER COMMENTS:

- **U** = Values not detected above the MDL are reported at the sample adjusted CRQL with a "U" flag, per the CLP Statement of Work.
- **J** = Results that are greater than the MDL but less than the CRQL are flagged (J) as estimated values with no superscripts.
 - **J¹** = Result is estimated (J) due to analysis out of holding time.
 - **J²** = Result is estimated (J) due to laboratory duplicate RPD greater than 20%.

NOTES:

Results are reported in milligrams per kilogram (mg/kg).
MDL = Method Detection Limit.
RL = Reporting Limit Limit.
All results are reported on a Dry Weight Basis.
DATA SUMMARY TABLE 5

TOTAL ORGANIC CARBON SEDIMENT ANALYSIS

<table>
<thead>
<tr>
<th>COMPUND</th>
<th>MDL</th>
<th>CRQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Organic Carbon (TOC)</td>
<td>746</td>
<td>1,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>STATION LOCATION</th>
<th>LABORATORY NUMBER</th>
<th>COMPOUND MDL CRQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>D35240</td>
<td>SD-27A</td>
<td>180-72665-19</td>
<td>746</td>
</tr>
<tr>
<td>D35250</td>
<td>SD-35</td>
<td>180-72665-20</td>
<td>190,000</td>
</tr>
<tr>
<td>D35255</td>
<td>SD-40A</td>
<td>180-72665-21</td>
<td>44,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DILUTION FACTOR</th>
<th>DATE SAMPLED</th>
<th>DATE ANALYZED</th>
<th>% SOLID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>11/16/2017</td>
<td>12/1/2017</td>
<td>18.9</td>
</tr>
<tr>
<td>1.0</td>
<td>11/16/2017</td>
<td>11/30/2017</td>
<td>53.4</td>
</tr>
<tr>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/28/2017</td>
<td>42.1</td>
</tr>
</tbody>
</table>

QUALIFIER COMMENTS:

- U = Values not detected above the MDL are reported at the sample adjusted CRQL with a "U" flag, per the CLP Statement of Work.
- J = Results that are greater than the MDL but less than the CRQL are flagged (J) as estimated values with no superscripts.
- J¹ = Result is estimated (J) due to analysis out of holding time.
- J² = Result is estimated (J) due to laboratory duplicate RPD greater than 20%.

NOTES:

Results are reported in milligrams per kilogram (mg/kg).

MDL = Method Detection Limit.

RL = Reporting Limit Limit.

All results are reported on a Dry Weight Basis.
DATA SUMMARY TABLE 6
TOTAL ORGANIC CARBON SEDIMENT ANALYSIS
NOVEMBER 2017

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>STATION LOCATION</th>
<th>LABORATORY NUMBER</th>
<th>COMPOUND</th>
<th>MDL</th>
<th>CRQL</th>
<th>SD-05</th>
<th>SD-06</th>
<th>SD-07</th>
<th>SD-08</th>
<th>SD-09</th>
<th>SD-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>D35210</td>
<td>SD-05</td>
<td>180-72573-4</td>
<td>Total Organic Carbon (TOC)</td>
<td>746</td>
<td>1,000</td>
<td>11,000</td>
<td>160,000</td>
<td>9,000</td>
<td>6,700</td>
<td>14,000</td>
<td>61,000</td>
</tr>
<tr>
<td>D35211</td>
<td>SD-06</td>
<td>180-72573-5</td>
<td>J</td>
<td>1,2</td>
<td>160,000</td>
<td>J</td>
<td>J</td>
<td>6,700</td>
<td>J</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>D35212</td>
<td>SD-07</td>
<td>180-72573-6</td>
<td>J</td>
<td>1,2</td>
<td>9,000</td>
<td>J</td>
<td>J</td>
<td>6,700</td>
<td>J</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>D35213</td>
<td>SD-08</td>
<td>180-72573-7</td>
<td>J</td>
<td>1,2</td>
<td>6,700</td>
<td>J</td>
<td>J</td>
<td>6,700</td>
<td>J</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>D35214</td>
<td>SD-09</td>
<td>180-72573-8</td>
<td>J</td>
<td>1,2</td>
<td>14,000</td>
<td>J</td>
<td>J</td>
<td>6,700</td>
<td>J</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>D35215</td>
<td>SD-10</td>
<td>180-72573-9</td>
<td>J</td>
<td>1,2</td>
<td>61,000</td>
<td>J</td>
<td>J</td>
<td>6,700</td>
<td>J</td>
<td>J</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DILUTION FACTOR</th>
<th>1.0</th>
<th>1.0</th>
<th>1.0</th>
<th>1.0</th>
<th>1.0</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>% SOLID</td>
<td>81.2</td>
<td>38.4</td>
<td>83.4</td>
<td>78.9</td>
<td>73.3</td>
<td>50.7</td>
</tr>
</tbody>
</table>

S3VM DATA VALIDATION

QUALIFIER COMMENTS:
- **U** = Values not detected above the MDL are reported at the sample adjusted CRQL with a "U" flag, per the CLP Statement of Work.
- **J** = Results that are greater than the MDL but less than the CRQL are flagged (J) as estimated values with no superscripts.
- **J**¹ = Result is estimated (J) due to poor matrix spike recovery.
- **J**² = Result is estimated (J) due to field duplicate RPD greater than 50%.

NOTES:
- Results are reported in milligrams per kilogram (mg/kg).
- MDL = Method Detection Limit.
- RL = Reporting Limit Limit.
- All results are reported on a Dry Weight Basis.
DATA SUMMARY TABLE 6
TOTAL ORGANIC CARBON SEDIMENT ANALYSIS
NOVEMBER 2017

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>STATION LOCATION</th>
<th>LABORATORY NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>D35216</td>
<td>SD-11</td>
<td>180-72573-10</td>
</tr>
<tr>
<td>D35219</td>
<td>SD-12</td>
<td>180-72573-11</td>
</tr>
<tr>
<td>D35220</td>
<td>SD-13</td>
<td>180-72573-12</td>
</tr>
<tr>
<td>D35254</td>
<td>SD-39</td>
<td>180-72573-13</td>
</tr>
<tr>
<td>D35256</td>
<td>SD-41</td>
<td>180-72573-14</td>
</tr>
<tr>
<td>D35257</td>
<td>SD-42</td>
<td>180-72573-15</td>
</tr>
</tbody>
</table>

TOTAL ORGANIC CARBON (TOC) ANALYSIS

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>MDL</th>
<th>CRQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Organic Carbon (TOC)</td>
<td>746</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>42,000</td>
<td>50,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DILUTION FACTOR</th>
<th>DATE SAMPLED</th>
<th>DATE ANALYZED</th>
<th>% SOLID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>11/14/2017</td>
<td>11/27/2017</td>
<td>56.4</td>
</tr>
<tr>
<td>1.0</td>
<td>11/14/2017</td>
<td>11/27/2017</td>
<td>61</td>
</tr>
<tr>
<td>1.0</td>
<td>11/14/2017</td>
<td>11/27/2017</td>
<td>68.8</td>
</tr>
<tr>
<td>1.0</td>
<td>11/13/2017</td>
<td>11/27/2017</td>
<td>46.4</td>
</tr>
<tr>
<td>1.0</td>
<td>11/14/2017</td>
<td>11/27/2017</td>
<td>71.1</td>
</tr>
<tr>
<td>1.0</td>
<td>11/14/2017</td>
<td>11/27/2017</td>
<td>34.7</td>
</tr>
</tbody>
</table>

QUALIFIER COMMENTS:
- **U**: Values not detected above the MDL are reported at the sample adjusted CRQL with a "U" flag, per the CLP Statement of Work.
- **J**: Results that are greater than the MDL but less than the CRQL are flagged (J) as estimated values with no superscripts.
- **J¹**: Result is estimated (J) due to poor matrix spike recovery.
- **J²**: Result is estimated (J) due to field duplicate RPD greater than 50%.

NOTES:
- Results are reported in milligrams per kilogram (mg/kg).
- MDL = Method Detection Limit.
- RL = Reporting Limit Limit.
- All results are reported on a Dry Weight Basis.
DATA SUMMARY TABLE 6

TOTAL ORGANIC CARBON SEDIMENT ANALYSIS

NOVEMBER 2017

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>STATION LOCATION</th>
<th>LABORATORY NUMBER</th>
<th>COMPOUND</th>
<th>MDL</th>
<th>CRQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>D35258</td>
<td>SD-43</td>
<td>180-72573-16</td>
<td>Total Organic Carbon (TOC)</td>
<td>746</td>
<td>1,000</td>
</tr>
<tr>
<td>D35275</td>
<td>SD-08A</td>
<td>180-72573-19</td>
<td></td>
<td>3,400</td>
<td>J(^{1,2})</td>
</tr>
<tr>
<td>D35276</td>
<td>SD-12A</td>
<td>180-72573-20</td>
<td></td>
<td>66,000</td>
<td>J(^{1,2})</td>
</tr>
<tr>
<td>D35277</td>
<td>SD-100A</td>
<td>180-72573-1</td>
<td></td>
<td>40,000</td>
<td>J(^{1,2})</td>
</tr>
<tr>
<td>D35278</td>
<td>SD-100B</td>
<td>180-72573-2</td>
<td></td>
<td>93,000</td>
<td>J(^{1,2})</td>
</tr>
<tr>
<td>D35279</td>
<td>SD-100C</td>
<td>180-72573-3</td>
<td></td>
<td>110,000</td>
<td>J(^{1,2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120,000</td>
<td>J(^{1,2})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DILUTION FACTOR</th>
<th>DATE SAMPLED</th>
<th>DATE ANALYZED</th>
<th>% SOLID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>11/14/2017</td>
<td>11/27/2017</td>
<td>80.5</td>
</tr>
<tr>
<td>1.0</td>
<td>11/13/2017</td>
<td>11/24/2017</td>
<td>56.5</td>
</tr>
<tr>
<td>1.0</td>
<td>11/14/2017</td>
<td>11/27/2017</td>
<td>55.2</td>
</tr>
<tr>
<td>1.0</td>
<td>11/14/2017</td>
<td>11/27/2017</td>
<td>44.5</td>
</tr>
<tr>
<td>1.0</td>
<td>11/14/2017</td>
<td>11/27/2017</td>
<td>36.8</td>
</tr>
<tr>
<td>1.0</td>
<td>11/14/2017</td>
<td>11/27/2017</td>
<td>44.7</td>
</tr>
</tbody>
</table>

S3VM DATA VALIDATION

QUALIFIER COMMENTS:

- **U** = Values not detected above the MDL are reported at the sample adjusted CRQL with a "U" flag, per the CLP Statement of Work.
- **J** = Results that are greater than the MDL but less than the CRQL are flagged (J) as estimated values with no superscripts.
- **J\(^{1}\)** = Result is estimated (J) due to poor matrix spike recovery.
- **J\(^{2}\)** = Result is estimated (J) due to field duplicate RPD greater than 50%.

NOTES:

- Results are reported in milligrams per kilogram (mg/kg).
- MDL = Method Detection Limit.
- RL = Reporting Limit Limit.
- All results are reported on a Dry Weight Basis.
DATA SUMMARY TABLE 7

TOTAL ORGANIC CARBON SEDIMENT ANALYSIS

NOVEMBER 2017

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>STATION LOCATION</th>
<th>LABORATORY NUMBER</th>
<th>MDL</th>
<th>CRQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>D35231</td>
<td>SD-22</td>
<td>180-72664-1</td>
<td>746</td>
<td>1,000</td>
</tr>
<tr>
<td>D35241</td>
<td>SD-28</td>
<td>180-72664-2</td>
<td>42,000</td>
<td>320,000</td>
</tr>
<tr>
<td>D35242</td>
<td>SD-29</td>
<td>180-72664-3</td>
<td>290,000</td>
<td>290,000</td>
</tr>
<tr>
<td>D35243</td>
<td>SD-30</td>
<td>180-72664-4</td>
<td>45,000</td>
<td>45,000</td>
</tr>
<tr>
<td>D35245</td>
<td>SD-32</td>
<td>180-72664-5</td>
<td>150,000</td>
<td>150,000</td>
</tr>
<tr>
<td>D35247</td>
<td>SD-32A</td>
<td>180-72664-6</td>
<td>120,000</td>
<td>120,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>DILUTION FACTOR</th>
<th>DATE SAMPLED</th>
<th>DATE ANALYZED</th>
<th>% SOLID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Organic Carbon (TOC)</td>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/15/2017</td>
<td>60.8</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>11/16/2017</td>
<td>11/16/2017</td>
<td>60.8</td>
</tr>
</tbody>
</table>

S3VM DATA VALIDATION

QUALIFIER COMMENTS:

- **U** = Value is non-detected.
- **J** = Results that are greater than the MDL but less than the CRQL are flagged (J) as estimated values with no superscripts.

NOTES:

Results are reported in milligrams per kilogram (mg/kg).
MDL = Method Detection Limit.
RL = Reporting Limit Limit.
All results are reported on a Dry Weight Basis.
TOTAL ORGANIC CARBON (TOC) SEDIMENT ANALYSIS

DATA SUMMARY TABLE 7

SITE: LOWER NEPONSET RIVER PCBs
CASE: 0906F **SDG:** D35231
LABORATORY: EARTH TOXICS, INC.

November 2017

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>STATION LOCATION</th>
<th>LABORATORY NUMBER</th>
<th>COMPOUND</th>
<th>MDL</th>
<th>CRQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>D35248</td>
<td>SD-33</td>
<td>180-72664-7</td>
<td>Total Organic Carbon (TOC)</td>
<td>746</td>
<td>1,000</td>
</tr>
<tr>
<td>D35249</td>
<td>SD-34</td>
<td>180-72664-8</td>
<td></td>
<td>75,000</td>
<td>100,000</td>
</tr>
<tr>
<td>D35251</td>
<td>SD-36</td>
<td>180-72664-9</td>
<td></td>
<td>470,000</td>
<td>90,000</td>
</tr>
<tr>
<td>D35252</td>
<td>SD-37</td>
<td>180-72664-10</td>
<td></td>
<td>90,000</td>
<td>110,000</td>
</tr>
<tr>
<td>D35253</td>
<td>SD-38</td>
<td>180-72664-11</td>
<td></td>
<td>100,000</td>
<td>100,000</td>
</tr>
<tr>
<td>D35259</td>
<td>SD-44</td>
<td>180-72664-12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DILUTION FACTOR</th>
<th>DATE SAMPLED</th>
<th>DATE ANALYZED</th>
<th>% SOLID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>11/16/2017</td>
<td>11/30/2017</td>
<td>51.5</td>
</tr>
<tr>
<td>1.0</td>
<td>11/16/2017</td>
<td>11/30/2017</td>
<td>35.1</td>
</tr>
<tr>
<td>1.0</td>
<td>11/16/2017</td>
<td>11/30/2017</td>
<td>15.1</td>
</tr>
<tr>
<td>1.0</td>
<td>11/16/2017</td>
<td>11/30/2017</td>
<td>36.3</td>
</tr>
<tr>
<td>1.0</td>
<td>11/16/2017</td>
<td>11/30/2017</td>
<td>42.2</td>
</tr>
<tr>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/27/2017</td>
<td>42.5</td>
</tr>
</tbody>
</table>

SVM DATA VALIDATION

| QUALIFIER COMMENTS: | U = Value is non-detected.
J = Results that are greater than the MDL but less than the CRQL are flagged (J) as estimated values with no superscripts.

NOTES:

- Results are reported in milligrams per kilogram (mg/kg).
- MDL = Method Detection Limit.
- RL = Reporting Limit Limit.
- All results are reported on a Dry Weight Basis.
Data Summary Table 7

Total Organic Carbon Sediment Analysis

November 2017

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Station Location</th>
<th>Laboratory Number</th>
<th>Compound MDL CRQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>D35260</td>
<td>SD-45</td>
<td>180-72664-13</td>
<td>746 1,000</td>
</tr>
<tr>
<td>D35280</td>
<td>SD-21A</td>
<td>180-72664-15</td>
<td>68,000 65,000</td>
</tr>
<tr>
<td>D35281</td>
<td>SD-23B</td>
<td>180-72664-16</td>
<td>13,000 120,000</td>
</tr>
<tr>
<td>D35282</td>
<td>SD-23A</td>
<td>180-72664-17</td>
<td>16,000 100,000</td>
</tr>
<tr>
<td>D35283</td>
<td>SD-22A</td>
<td>180-72664-18</td>
<td></td>
</tr>
<tr>
<td>D35284</td>
<td>SD-26A</td>
<td>180-72664-19</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dilution Factor</th>
<th>Date Sampled</th>
<th>Date Analyzed</th>
<th>% Solid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/15/2017</td>
<td>68.3</td>
</tr>
<tr>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/15/2017</td>
<td>61</td>
</tr>
<tr>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/15/2017</td>
<td>59.2</td>
</tr>
<tr>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/15/2017</td>
<td>50.7</td>
</tr>
<tr>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/16/2017</td>
<td>69</td>
</tr>
<tr>
<td>1.0</td>
<td>11/15/2017</td>
<td>11/30/2017</td>
<td>50.8</td>
</tr>
</tbody>
</table>

S3VM Data Validation

Qualifier Comments:

- **U** = Value is non-detected.
- **J** = Results that are greater than the MDL but less than the CRQL are flagged (J) as estimated values with no superscripts.

Notes:

Results are reported in milligrams per kilogram (mg/kg).

MDL = Method Detection Limit.

RL = Reporting Limit Limit.

All results are reported on a Dry Weight Basis.
SITE: LOWER NEPONSET RIVER PCBs
CASE: 0906F **SDG:** D35231
LABORATORY: EARTH TOXICS, INC.

DATA SUMMARY TABLE 7
TOTAL ORGANIC CARBON SEDIMENT ANALYSIS
NOVEMBER 2017

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>MDL</th>
<th>CRQL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Organic Carbon (TOC)</td>
<td>746</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>190,000</td>
<td>110,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DILUTION FACTOR</th>
<th>DATE SAMPLED</th>
<th>DATE ANALYZED</th>
<th>SOLID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>11/16/2017</td>
<td>11/16/2017</td>
<td>29.1</td>
</tr>
<tr>
<td></td>
<td>11/16/2017</td>
<td>11/30/2017</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>11/30/2017</td>
<td>11/30/2017</td>
<td>22.6</td>
</tr>
</tbody>
</table>

QUALIFIER COMMENTS:
- **U** = Value is non-detected.
- **J** = Results that are greater than the MDL but less than the CRQL are flagged (J) as estimated values with no superscripts.

NOTES:
- Results are reported in milligrams per kilogram (mg/kg).
- **MDL** = Method Detection Limit.
- **RL** = Reporting Limit Limit.
- All results are reported on a Dry Weight Basis.
ATTACHMENT E
LOWER NEPONSET RIVER PCBs
START ANALYTICAL RESULTS TABLES
Samples Collected from 4 to 6 September 2018

Table 1 Summary of Polychlorinated Biphenyl Field Screening Results, Sediment/Source Samples, Lower Neponset River PCBs Site, September 2018
Table 2 ESAT Generated Data Summary Table – Validated Results, Lower Neponset River PCBs Site, September 2018
Table 3 Data Summary Table, Total PCB Congener and WHO Toxic PCB Homologues Sediment Analysis, September 2018
Table 4 Summary of Polychlorinated Biphenyl Results, Sediment/Source Samples, Lower Neponset River PCBs Site, September 2018
Table 5 Data Summary Table, Total Organic Carbon Sediment Analysis, Lower Neponset River PCBs Site, September 2018
TABLE 1

SUMMARY OF POLYCHLORINATED BIPHENYL FIELD SCREENING RESULTS

SEDIMENT/SOURCE SAMPLES

LOWER NEPONSET RIVER PCBS SITE

SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Sample Location</th>
<th>Lab Sample ID</th>
<th>Aroclor-1248</th>
<th>Aroclor-1254</th>
<th>Aroclor-1260</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBD-04 A</td>
<td>AB76454</td>
<td>2,300</td>
<td>400</td>
<td>ND (300)</td>
</tr>
<tr>
<td>WBD-04 B</td>
<td>AB76455</td>
<td>1,900</td>
<td>400</td>
<td>ND (300)</td>
</tr>
<tr>
<td>WBD-04 C</td>
<td>AB76456</td>
<td>300</td>
<td>200</td>
<td>ND (300)</td>
</tr>
<tr>
<td>WBD-04 D</td>
<td>AB76457</td>
<td>ND (500)</td>
<td>ND (300)</td>
<td>ND (300)</td>
</tr>
<tr>
<td>WBD-C2 A</td>
<td>AB76460</td>
<td>ND (500)</td>
<td>130</td>
<td>ND (300)</td>
</tr>
<tr>
<td>WBD-C2 B</td>
<td>AB76461</td>
<td>ND (500)</td>
<td>130</td>
<td>ND (300)</td>
</tr>
<tr>
<td>PTB-C1 A</td>
<td>AB76462</td>
<td>ND (500)</td>
<td>ND (300)</td>
<td>ND (300)</td>
</tr>
<tr>
<td>PTB-C1 B</td>
<td>AB76463</td>
<td>ND (500)</td>
<td>ND (300)</td>
<td>ND (300)</td>
</tr>
<tr>
<td>WBD-C05 A</td>
<td>AB76464</td>
<td>ND (500)</td>
<td>400</td>
<td>ND (300)</td>
</tr>
<tr>
<td>WBD-C05 B</td>
<td>AB76465</td>
<td>3,400</td>
<td>1,200</td>
<td>ND (300)</td>
</tr>
<tr>
<td>WBD-C05 C</td>
<td>AB76466</td>
<td>12,000</td>
<td>2,500</td>
<td>1,700</td>
</tr>
<tr>
<td>WBD-C1 A</td>
<td>AB76467</td>
<td>ND (500)</td>
<td>200</td>
<td>ND (300)</td>
</tr>
<tr>
<td>WBD-C1 B</td>
<td>AB76468</td>
<td>1,100</td>
<td>300</td>
<td>ND (300)</td>
</tr>
<tr>
<td>WBD-C1 D</td>
<td>AB76469</td>
<td>1,600</td>
<td>500</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C101 A</td>
<td>AB76470</td>
<td>500</td>
<td>200</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C103 A</td>
<td>AB76471</td>
<td>ND (500)</td>
<td>ND (300)</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C01 A</td>
<td>AB76472</td>
<td>400</td>
<td>200</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C01 B</td>
<td>AB76473</td>
<td>400</td>
<td>ND (03)</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C3 A</td>
<td>AB76474</td>
<td>ND (500)</td>
<td>900</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C3 B</td>
<td>AB76475</td>
<td>4,400</td>
<td>700</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C3 C</td>
<td>AB76476</td>
<td>16,000</td>
<td>1,900</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C3 D</td>
<td>AB76477</td>
<td>11,000</td>
<td>1,000</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C3 E</td>
<td>AB76478</td>
<td>900</td>
<td>200</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C3 F</td>
<td>AB76479</td>
<td>ND (500)</td>
<td>ND (300)</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C3 A Lab Dup</td>
<td>AB76480</td>
<td>ND (500)</td>
<td>700</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C02 A</td>
<td>AB76481</td>
<td>500</td>
<td>400</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C02 B</td>
<td>AB76482</td>
<td>8,600</td>
<td>900</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C02 C</td>
<td>AB76483</td>
<td>500</td>
<td>200</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C02 D</td>
<td>AB76484</td>
<td>300</td>
<td>200</td>
<td>ND (300)</td>
</tr>
<tr>
<td>Sample Location</td>
<td>Lab Sample ID</td>
<td>Aroclor-1248</td>
<td>Aroclor-1254</td>
<td>Aroclor-1260</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>BCA-C02 D Lab Dup</td>
<td>AB76485</td>
<td>400</td>
<td>110</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C4 A</td>
<td>AB76486</td>
<td>1,100</td>
<td>1,000</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C4 B</td>
<td>AB76487</td>
<td>9,600</td>
<td>1,100</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C4 C</td>
<td>AB76488</td>
<td>5,600</td>
<td>600</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C4 D</td>
<td>AB76489</td>
<td>300</td>
<td>ND (300)</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C4 E</td>
<td>AB76490</td>
<td>300</td>
<td>ND (300)</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C5 A</td>
<td>AB76491</td>
<td>1,600</td>
<td>500</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C5 B</td>
<td>AB76492</td>
<td>4,300</td>
<td>800</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C5 C</td>
<td>AB76493</td>
<td>6,300</td>
<td>600</td>
<td>300</td>
</tr>
<tr>
<td>BCA-C5 D</td>
<td>AB76494</td>
<td>10,000</td>
<td>800</td>
<td>400</td>
</tr>
<tr>
<td>BCA-C5 E</td>
<td>AB76495</td>
<td>3,500</td>
<td>700</td>
<td>200</td>
</tr>
<tr>
<td>BCA-C6 A</td>
<td>AB76496</td>
<td>ND (500)</td>
<td>900</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C6 B</td>
<td>AB76497</td>
<td>3,300</td>
<td>800</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C6 C</td>
<td>AB76498</td>
<td>8,200</td>
<td>500</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C6 D</td>
<td>AB76499</td>
<td>5,200</td>
<td>500</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C6 E</td>
<td>AB76500</td>
<td>3,200</td>
<td>300</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C6 F</td>
<td>AB76501</td>
<td>2,100</td>
<td>200</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C6 G</td>
<td>AB76502</td>
<td>1,700</td>
<td>200</td>
<td>ND (300)</td>
</tr>
<tr>
<td>WBD-C1 C</td>
<td>AB76503</td>
<td>2,000</td>
<td>300</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C6 H</td>
<td>AB76504</td>
<td>1,800</td>
<td>200</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C6 I</td>
<td>AB76505</td>
<td>1,300</td>
<td>130</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C7 A</td>
<td>AB76506</td>
<td>700</td>
<td>110</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C7 B</td>
<td>AB76507</td>
<td>3,300</td>
<td>400</td>
<td>ND (300)</td>
</tr>
<tr>
<td>BCA-C7 C</td>
<td>AB76508</td>
<td>600</td>
<td>ND (300)</td>
<td>ND (300)</td>
</tr>
<tr>
<td>THD-C1 A</td>
<td>AB76509</td>
<td>1,700</td>
<td>300</td>
<td>ND (300)</td>
</tr>
<tr>
<td>THD-C1 B</td>
<td>AB76510</td>
<td>1,300</td>
<td>400</td>
<td>ND (300)</td>
</tr>
<tr>
<td>THD-C1 C</td>
<td>AB76511</td>
<td>1,800</td>
<td>600</td>
<td>ND (300)</td>
</tr>
<tr>
<td>THD-C1 D</td>
<td>AB76512</td>
<td>3,900</td>
<td>2,200</td>
<td>1,100</td>
</tr>
<tr>
<td>THD-C101 A</td>
<td>AB76513</td>
<td>3,800</td>
<td>1,600</td>
<td>900</td>
</tr>
</tbody>
</table>
TABLE 1

SUMMARY OF POLYCHLORINATED BIPHENYL FIELD SCREENING RESULTS

SEDIMENT/SOURCE SAMPLES

LOWER NEPONSET RIVER PCBS SITE

SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Sample Location</th>
<th>Lab Sample ID</th>
<th>Aroclor-1248</th>
<th>Aroclor-1254</th>
<th>Aroclor-1260</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD-C2 A</td>
<td>AB76514</td>
<td>300</td>
<td>200</td>
<td>ND (300)</td>
</tr>
<tr>
<td>THD-C2 B</td>
<td>AB76515</td>
<td>2,600</td>
<td>700</td>
<td>ND (300)</td>
</tr>
<tr>
<td>THD-C2 C</td>
<td>AB76516</td>
<td>ND (1,000)</td>
<td>1,900</td>
<td>1,300</td>
</tr>
<tr>
<td>THD-C2 D</td>
<td>AB76517</td>
<td>2,200</td>
<td>1,000</td>
<td>700</td>
</tr>
<tr>
<td>THD-C3 A</td>
<td>AB76518</td>
<td>ND (500)</td>
<td>ND (300)</td>
<td>ND (300)</td>
</tr>
<tr>
<td>THD-C3 B</td>
<td>AB76519</td>
<td>ND (500)</td>
<td>400</td>
<td>ND (300)</td>
</tr>
<tr>
<td>THD-C3 C</td>
<td>AB76520</td>
<td>ND (500)</td>
<td>200</td>
<td>ND (300)</td>
</tr>
<tr>
<td>THD-C1 E</td>
<td>AB76521</td>
<td>10,000</td>
<td>2,100</td>
<td>1,200</td>
</tr>
<tr>
<td>THD-C1 G</td>
<td>AB76522</td>
<td>14,000</td>
<td>3,500</td>
<td>1,300</td>
</tr>
<tr>
<td>THD-C1 H</td>
<td>AB76523</td>
<td>1,800</td>
<td>500</td>
<td>ND (300)</td>
</tr>
<tr>
<td>THD-C1 F Lab Dup</td>
<td>AB76524</td>
<td>23,000</td>
<td>3,200</td>
<td>2,400</td>
</tr>
<tr>
<td>LCA- C1 A</td>
<td>AB76525</td>
<td>ND (500)</td>
<td>300</td>
<td>ND (300)</td>
</tr>
<tr>
<td>LCA- C1 B</td>
<td>AB76526</td>
<td>2,300</td>
<td>500</td>
<td>ND (300)</td>
</tr>
<tr>
<td>LCA-C2 A</td>
<td>AB76527</td>
<td>18,000</td>
<td>ND (50)</td>
<td>ND (50)</td>
</tr>
<tr>
<td>LCA-C2 B</td>
<td>AB76528</td>
<td>10,000</td>
<td>5,200</td>
<td>ND (0.6)</td>
</tr>
<tr>
<td>LCA-C2 C</td>
<td>AB76529</td>
<td>26,000</td>
<td>4,500</td>
<td>4,400</td>
</tr>
<tr>
<td>LCA-C2 D</td>
<td>AB76530</td>
<td>8,800</td>
<td>2,800</td>
<td>2,200</td>
</tr>
<tr>
<td>LCA-C2 E</td>
<td>AB76531</td>
<td>58,000</td>
<td>12,000</td>
<td>6,200</td>
</tr>
<tr>
<td>LCA-C3 A</td>
<td>AB76532</td>
<td>18,000</td>
<td>2,400</td>
<td>1,200</td>
</tr>
<tr>
<td>LCA-C3 B</td>
<td>AB76533</td>
<td>8,500</td>
<td>3,400</td>
<td>ND (600)</td>
</tr>
<tr>
<td>LCA-C3 C</td>
<td>AB76534</td>
<td>30,000</td>
<td>21,000</td>
<td>16,000</td>
</tr>
<tr>
<td>LCA-C3 D</td>
<td>AB76535</td>
<td>50,000</td>
<td>8,600</td>
<td>3,200</td>
</tr>
<tr>
<td>MBC-C1 A</td>
<td>AB76536</td>
<td>ND (500)</td>
<td>300</td>
<td>ND (300)</td>
</tr>
<tr>
<td>MBC-C1 B</td>
<td>AB76537</td>
<td>ND (500)</td>
<td>200</td>
<td>ND (300)</td>
</tr>
<tr>
<td>MBC-C1 C</td>
<td>AB76538</td>
<td>ND (500)</td>
<td>400</td>
<td>ND (300)</td>
</tr>
<tr>
<td>MBC-C1 D</td>
<td>AB76539</td>
<td>3,700</td>
<td>900</td>
<td>ND (300)</td>
</tr>
<tr>
<td>MBC-C1 E</td>
<td>AB76540</td>
<td>2,100</td>
<td>600</td>
<td>ND (300)</td>
</tr>
<tr>
<td>MBC-C1 F</td>
<td>AB76541</td>
<td>2,500</td>
<td>400</td>
<td>ND (300)</td>
</tr>
<tr>
<td>MBC-C1 G</td>
<td>AB76542</td>
<td>300</td>
<td>ND (300)</td>
<td>ND (300)</td>
</tr>
</tbody>
</table>
TABLE 1

SUMMARY OF POLYCHLORINATED BIPHENYL FIELD SCREENING RESULTS

SEDIMENT/SOURCE SAMPLES

LOWER NEPONSET RIVER PCBS SITE

SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Sample Location</th>
<th>Lab Sample ID</th>
<th>Aroclor-1248</th>
<th>Aroclor-1254</th>
<th>Aroclor-1260</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMB-C1 A</td>
<td>AB76543</td>
<td>400</td>
<td>130</td>
<td>ND (300)</td>
</tr>
<tr>
<td>UMB-C1 B</td>
<td>AB76544</td>
<td>ND (500)</td>
<td>400</td>
<td>ND (300)</td>
</tr>
<tr>
<td>UMB-C1 C</td>
<td>AB76545</td>
<td>1,100</td>
<td>200</td>
<td>ND (300)</td>
</tr>
<tr>
<td>UMB-C1 D</td>
<td>AB76546</td>
<td>ND (500)</td>
<td>200</td>
<td>ND (300)</td>
</tr>
<tr>
<td>UMB-C2 A</td>
<td>AB76547</td>
<td>ND (500)</td>
<td>ND (300)</td>
<td>ND (300)</td>
</tr>
<tr>
<td>UMB-C2 B</td>
<td>AB76548</td>
<td>1,400</td>
<td>500</td>
<td>300</td>
</tr>
<tr>
<td>UMB-C2 C</td>
<td>AB76549</td>
<td>2,700</td>
<td>700</td>
<td>ND (300)</td>
</tr>
<tr>
<td>UNR-C1 A</td>
<td>AB76550</td>
<td>ND (500)</td>
<td>ND (300)</td>
<td>ND (300)</td>
</tr>
<tr>
<td>UNR-C1 B</td>
<td>AB76551</td>
<td>ND (500)</td>
<td>ND (300)</td>
<td>ND (300)</td>
</tr>
<tr>
<td>UNR-C1 C</td>
<td>AB76552</td>
<td>ND (500)</td>
<td>ND (300)</td>
<td>ND (300)</td>
</tr>
<tr>
<td>UNR-C2 A</td>
<td>AB76553</td>
<td>ND (500)</td>
<td>300</td>
<td>ND (300)</td>
</tr>
<tr>
<td>UNR-C2 B</td>
<td>AB76554</td>
<td>ND (500)</td>
<td>1,000</td>
<td>ND (300)</td>
</tr>
<tr>
<td>UNR-C2 C</td>
<td>AB76555</td>
<td>ND (500)</td>
<td>500</td>
<td>ND (300)</td>
</tr>
<tr>
<td>UNR-C2 D</td>
<td>AB76556</td>
<td>1,400</td>
<td>800</td>
<td>ND (300)</td>
</tr>
<tr>
<td>UNR-C3 A</td>
<td>AB76557</td>
<td>ND (500)</td>
<td>300</td>
<td>ND (300)</td>
</tr>
<tr>
<td>UNR-C3 B</td>
<td>AB76558</td>
<td>ND (500)</td>
<td>ND (300)</td>
<td>ND (300)</td>
</tr>
<tr>
<td>UNR-C3 C</td>
<td>AB76559</td>
<td>ND (500)</td>
<td>ND (300)</td>
<td>ND (300)</td>
</tr>
<tr>
<td>UNR-C3 D</td>
<td>AB76560</td>
<td>ND (500)</td>
<td>ND (300)</td>
<td>ND (300)</td>
</tr>
</tbody>
</table>

NOTES:

Samples analyzed by U.S. EPA Office of Environmental Measurement and Evaluation (OEME) Mobile Laboratory using EPA Region I SOP, EIASOP-FLDPCB3, PCB's in Soil Field Method. Lab RLs = Laboratory Reporting Limits.

Results in micrograms per Kilogram (µg/Kg). [Note: Results initially reported in milligrams per Kilograms (mg/Kg) and have been converted.]

Bolded values exceed laboratory RLs.

Lab dup = Laboratory duplicate sample result.

ND = Not detected above laboratory RLs.
TABLE 2
ESAT GENERATED DATA SUMMARY TABLE - VALIDATED RESULTS
LOWER NEPOSET RIVER PCB SITE
SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Sample No.:</th>
<th>PA41R3</th>
<th>PA41R4</th>
<th>PA41R5</th>
<th>PA41R6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Identifier:</td>
<td>SD-01 D35475</td>
<td>Field Sample</td>
<td>Field Sample</td>
<td>Field Sample</td>
</tr>
<tr>
<td>Sample Location:</td>
<td>D35475</td>
<td>Sediment</td>
<td>Sediment</td>
<td>Sediment</td>
</tr>
<tr>
<td>Sample Type:</td>
<td>Field Sample</td>
<td>Sediment</td>
<td>Sediment</td>
<td>Sediment</td>
</tr>
<tr>
<td>Dilution Factor:</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>% Solids:</td>
<td>52.9</td>
<td>89.4</td>
<td>63.1</td>
<td>51.9</td>
</tr>
<tr>
<td>Units:</td>
<td>ng/kg (dry)</td>
<td>ng/kg (dry)</td>
<td>ng/kg (dry)</td>
<td>ng/kg (dry)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLS</th>
<th>Compounds</th>
<th>Result</th>
<th>Flag</th>
<th>Result</th>
<th>Flag</th>
<th>Result</th>
<th>Flag</th>
<th>Result</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCB-1</td>
<td>2600000</td>
<td>U</td>
<td>12000</td>
<td>U</td>
<td>43000</td>
<td>J</td>
<td>61000</td>
<td>J</td>
</tr>
<tr>
<td>1</td>
<td>PCB-2</td>
<td>42000</td>
<td>U</td>
<td>1100</td>
<td>J</td>
<td>1100</td>
<td>J</td>
<td>12000</td>
<td>J</td>
</tr>
<tr>
<td>1</td>
<td>PCB-3</td>
<td>620000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>15000</td>
<td>J</td>
<td>21000</td>
<td>J</td>
</tr>
<tr>
<td>2</td>
<td>PCB-4</td>
<td>1300000</td>
<td>J</td>
<td>39000</td>
<td>U</td>
<td>15000</td>
<td>J</td>
<td>72000</td>
<td>J</td>
</tr>
<tr>
<td>2</td>
<td>PCB-5</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>1600</td>
<td>U</td>
<td>1900</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>PCB-6</td>
<td>920000</td>
<td>U</td>
<td>4100</td>
<td>U</td>
<td>4500</td>
<td>U</td>
<td>15000</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>PCB-7</td>
<td>150000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>4500</td>
<td>U</td>
<td>21000</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>PCB-8</td>
<td>280000</td>
<td>U</td>
<td>26000</td>
<td>U</td>
<td>14000</td>
<td>U</td>
<td>89000</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>PCB-9</td>
<td>370000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>3700</td>
<td>U</td>
<td>41000</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>PCB-10</td>
<td>1200000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>30000</td>
<td>U</td>
<td>38000</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>PCB-11</td>
<td>6400000</td>
<td>EB</td>
<td>650</td>
<td>JEB</td>
<td>24000</td>
<td>EB</td>
<td>76000</td>
<td>EB</td>
</tr>
<tr>
<td>2</td>
<td>PCB-12/13</td>
<td>240000</td>
<td>U</td>
<td>2200</td>
<td>U</td>
<td>97000</td>
<td>U</td>
<td>200000</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>PCB-14</td>
<td>370000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>1600</td>
<td>U</td>
<td>1900</td>
<td>U</td>
</tr>
<tr>
<td>2</td>
<td>PCB-15</td>
<td>1500000</td>
<td>U</td>
<td>2900</td>
<td>U</td>
<td>10000</td>
<td>U</td>
<td>410000</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>PCB-16</td>
<td>1600000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>10000</td>
<td>U</td>
<td>600000</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>PCB-17</td>
<td>2900000</td>
<td>U</td>
<td>9700</td>
<td>U</td>
<td>10000</td>
<td>U</td>
<td>110000</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>PCB-18/30</td>
<td>780000</td>
<td>U</td>
<td>2200</td>
<td>U</td>
<td>41000</td>
<td>U</td>
<td>220000</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>PCB-19</td>
<td>7900000</td>
<td>U</td>
<td>5900</td>
<td>U</td>
<td>89000</td>
<td>U</td>
<td>430000</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>PCB-20/28</td>
<td>870000</td>
<td>U</td>
<td>5800</td>
<td>U</td>
<td>31000</td>
<td>U</td>
<td>370000</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>PCB-21/33</td>
<td>660000</td>
<td>JEB</td>
<td>680</td>
<td>JEB</td>
<td>17000</td>
<td>EB</td>
<td>250000</td>
<td>EB</td>
</tr>
<tr>
<td>3</td>
<td>PCB-22</td>
<td>1600000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>59000</td>
<td>U</td>
<td>830000</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>PCB-23</td>
<td>370000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>1600</td>
<td>U</td>
<td>1900</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>PCB-24</td>
<td>370000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>1600</td>
<td>U</td>
<td>1900</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>PCB-25</td>
<td>1200000</td>
<td>U</td>
<td>1900</td>
<td>U</td>
<td>430000</td>
<td>U</td>
<td>1500000</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>PCB-26/29</td>
<td>1500000</td>
<td>U</td>
<td>2200</td>
<td>U</td>
<td>78000</td>
<td>U</td>
<td>2400000</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>PCB-27</td>
<td>2000000</td>
<td>U</td>
<td>2800</td>
<td>U</td>
<td>48000</td>
<td>U</td>
<td>2000000</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>PCB-31</td>
<td>2200000</td>
<td>U</td>
<td>2500</td>
<td>U</td>
<td>70000</td>
<td>U</td>
<td>3100000</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>PCB-32</td>
<td>2800000</td>
<td>U</td>
<td>4700</td>
<td>U</td>
<td>130000</td>
<td>U</td>
<td>8000000</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>PCB-34</td>
<td>370000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>18000</td>
<td>U</td>
<td>510000</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>PCB-35</td>
<td>370000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>16000</td>
<td>U</td>
<td>220000</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>PCB-36</td>
<td>370000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>1600</td>
<td>U</td>
<td>1900</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>PCB-37</td>
<td>2000000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>580000</td>
<td>U</td>
<td>5300000</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>PCB-38</td>
<td>370000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>2300</td>
<td>U</td>
<td>230000</td>
<td>U</td>
</tr>
<tr>
<td>3</td>
<td>PCB-39</td>
<td>1000000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>14000</td>
<td>U</td>
<td>150000</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>PCB-40/71</td>
<td>710000</td>
<td>U</td>
<td>2200</td>
<td>U</td>
<td>100000</td>
<td>U</td>
<td>1400000</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>PCB-41</td>
<td>210000</td>
<td>J</td>
<td>1100</td>
<td>U</td>
<td>150000</td>
<td>U</td>
<td>1300000</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>PCB-42</td>
<td>2900000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>650000</td>
<td>U</td>
<td>8700000</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>PCB-43</td>
<td>860000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>130000</td>
<td>U</td>
<td>1700000</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>PCB-44/4765</td>
<td>4100000</td>
<td>U</td>
<td>3400</td>
<td>U</td>
<td>2400000</td>
<td>U</td>
<td>2900000</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>PCB-45/51</td>
<td>1200000</td>
<td>U</td>
<td>2200</td>
<td>U</td>
<td>610000</td>
<td>U</td>
<td>4900000</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>PCB-46</td>
<td>1200000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>130000</td>
<td>U</td>
<td>2000000</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>PCB-48</td>
<td>3400000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>2400000</td>
<td>U</td>
<td>2100000</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>PCB-49/69</td>
<td>2200000</td>
<td>U</td>
<td>2200</td>
<td>U</td>
<td>1600000</td>
<td>U</td>
<td>2100000</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>PCB-50/53</td>
<td>1300000</td>
<td>U</td>
<td>2200</td>
<td>U</td>
<td>4900000</td>
<td>U</td>
<td>5100000</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>PCB-52</td>
<td>1800000</td>
<td>U</td>
<td>1900</td>
<td>U</td>
<td>2100000</td>
<td>U</td>
<td>3100000</td>
<td>U</td>
</tr>
</tbody>
</table>
TABLE 2

ESAT GENERATED DATA SUMMARY TABLE - VALIDATED RESULTS

LOWER NEPONSET RIVER PCBS SITE

SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Sample No.:</th>
<th>Site: Lower Neponset River</th>
<th>Lab: Cape Fear Analytical</th>
<th>Case: 47773</th>
<th>SDG: PA41R3</th>
<th>Method: HRSM01.2</th>
<th>Analysis: 209 CB Congeners</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Result</th>
<th>Flag</th>
<th>Units:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-54</td>
<td>530000</td>
<td></td>
<td>ng/kg (dry)</td>
<td>1100</td>
<td>U</td>
<td>19000</td>
<td>14000</td>
<td></td>
</tr>
<tr>
<td>PCB-55</td>
<td>3700</td>
<td>J</td>
<td>1100</td>
<td>U</td>
<td>29000</td>
<td>20000</td>
<td></td>
</tr>
<tr>
<td>PCB-56</td>
<td>30000</td>
<td>J EB</td>
<td>220</td>
<td>J EB</td>
<td>49000</td>
<td>EB</td>
<td>31000</td>
<td>EB</td>
<td></td>
</tr>
<tr>
<td>PCB-57</td>
<td>38000</td>
<td></td>
<td>1100</td>
<td>U</td>
<td>37000</td>
<td></td>
</tr>
<tr>
<td>PCB-58</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>5900</td>
<td></td>
</tr>
<tr>
<td>PCB-59/62/75</td>
<td>130000</td>
<td></td>
<td>3400</td>
<td>U</td>
<td>28000</td>
<td>25000</td>
<td></td>
</tr>
<tr>
<td>PCB-60</td>
<td>6500</td>
<td>J</td>
<td>1100</td>
<td>U</td>
<td>19000</td>
<td>81000</td>
<td></td>
</tr>
<tr>
<td>PCB-61/74/76</td>
<td>380000</td>
<td>EB</td>
<td>1000</td>
<td>J EB</td>
<td>180000</td>
<td>EB</td>
<td>180000</td>
<td>EB</td>
<td></td>
</tr>
<tr>
<td>PCB-62</td>
<td>89000</td>
<td></td>
<td>1100</td>
<td>U</td>
<td>13000</td>
<td></td>
</tr>
<tr>
<td>PCB-64</td>
<td>280000</td>
<td></td>
<td>1100</td>
<td>U</td>
<td>120000</td>
<td>120000</td>
<td></td>
</tr>
<tr>
<td>PCB-66</td>
<td>340000</td>
<td>EB</td>
<td>650</td>
<td>J EB</td>
<td>110000</td>
<td>EB</td>
<td>110000</td>
<td>EB</td>
<td></td>
</tr>
<tr>
<td>PCB-67</td>
<td>29000</td>
<td>J</td>
<td>1100</td>
<td>U</td>
<td>51000</td>
<td>67000</td>
<td></td>
</tr>
<tr>
<td>PCB-68</td>
<td>130000</td>
<td></td>
<td>1100</td>
<td>U</td>
<td>18000</td>
<td>22000</td>
<td></td>
</tr>
<tr>
<td>PCB-72</td>
<td>110000</td>
<td></td>
<td>1100</td>
<td>U</td>
<td>29000</td>
<td>35000</td>
<td></td>
</tr>
<tr>
<td>PCB-73</td>
<td>230000</td>
<td></td>
<td>1100</td>
<td>U</td>
<td>41000</td>
<td>37000</td>
<td></td>
</tr>
<tr>
<td>PCB-77</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>160000</td>
<td>140000</td>
<td></td>
</tr>
<tr>
<td>PCB-78</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>1600</td>
<td>1900</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>PCB-79</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>6000</td>
<td>8800</td>
<td></td>
</tr>
<tr>
<td>PCB-80</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>1600</td>
<td>1900</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>PCB-81</td>
<td>180000</td>
<td>EB</td>
<td>1100</td>
<td>U</td>
<td>240000</td>
<td>EB</td>
<td>340000</td>
<td>EB</td>
<td></td>
</tr>
<tr>
<td>PCB-82</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>13000</td>
<td>15000</td>
<td></td>
</tr>
<tr>
<td>PCB-83</td>
<td>77000</td>
<td></td>
<td>1100</td>
<td>U</td>
<td>69000</td>
<td>81000</td>
<td></td>
</tr>
<tr>
<td>PCB-84</td>
<td>180000</td>
<td>EB</td>
<td>1100</td>
<td>U</td>
<td>240000</td>
<td>EB</td>
<td>340000</td>
<td>EB</td>
<td></td>
</tr>
<tr>
<td>PCB-85/116/117</td>
<td>210000</td>
<td></td>
<td>3400</td>
<td>U</td>
<td>190000</td>
<td>220000</td>
<td></td>
</tr>
<tr>
<td>PCB-86/87/97/109/119/125</td>
<td>310000</td>
<td></td>
<td>6700</td>
<td>U</td>
<td>440000</td>
<td>530000</td>
<td></td>
</tr>
<tr>
<td>PCB-88/91</td>
<td>450000</td>
<td></td>
<td>2200</td>
<td>U</td>
<td>190000</td>
<td>220000</td>
<td></td>
</tr>
<tr>
<td>PCB-89</td>
<td>8800</td>
<td></td>
<td>1100</td>
<td>U</td>
<td>28000</td>
<td>39000</td>
<td></td>
</tr>
<tr>
<td>PCB-90/101/113</td>
<td>610000</td>
<td>EB</td>
<td>350</td>
<td>J EB</td>
<td>460000</td>
<td>EB</td>
<td>530000</td>
<td>EB</td>
<td></td>
</tr>
<tr>
<td>PCB-92</td>
<td>300000</td>
<td></td>
<td>1100</td>
<td>U</td>
<td>150000</td>
<td>170000</td>
<td></td>
</tr>
<tr>
<td>PCB-93/100</td>
<td>240000</td>
<td></td>
<td>2200</td>
<td>U</td>
<td>20000</td>
<td>24000</td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>74000</td>
<td></td>
<td>1100</td>
<td>U</td>
<td>14000</td>
<td>13000</td>
<td></td>
</tr>
<tr>
<td>PCB-95</td>
<td>390000</td>
<td></td>
<td>1100</td>
<td>U</td>
<td>520000</td>
<td>630000</td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>220000</td>
<td>J</td>
<td>1100</td>
<td>U</td>
<td>17000</td>
<td>20000</td>
<td></td>
</tr>
<tr>
<td>PCB-98/102</td>
<td>100000</td>
<td></td>
<td>2200</td>
<td>U</td>
<td>70000</td>
<td>76000</td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>380000</td>
<td>EB</td>
<td>1100</td>
<td>U</td>
<td>290000</td>
<td>EB</td>
<td>350000</td>
<td>EB</td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>620000</td>
<td></td>
<td>1100</td>
<td>U</td>
<td>92000</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>160000</td>
<td>J</td>
<td>1100</td>
<td>U</td>
<td>450</td>
<td>550</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>970000</td>
<td>EB</td>
<td>210</td>
<td>J EB</td>
<td>250000</td>
<td>EB</td>
<td>200000</td>
<td>EB</td>
<td></td>
</tr>
<tr>
<td>PCB-106</td>
<td>370000</td>
<td></td>
<td>1100</td>
<td>U</td>
<td>1600</td>
<td>1900</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>PCB-107</td>
<td>630000</td>
<td></td>
<td>1100</td>
<td>U</td>
<td>38000</td>
<td>42000</td>
<td></td>
</tr>
<tr>
<td>PCB-108/124</td>
<td>750000</td>
<td>U</td>
<td>2200</td>
<td>U</td>
<td>18000</td>
<td>14000</td>
<td></td>
</tr>
<tr>
<td>PCB-110/115</td>
<td>810000</td>
<td></td>
<td>2200</td>
<td>U</td>
<td>850000</td>
<td>1000000</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2

ESAT GENERATED DATA SUMMARY TABLE - VALIDATED RESULTS

LOWER NEPONSET RIVER PCBs SITE

SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Sample No.:</th>
<th>PA41R3 SD-01 D35475</th>
<th>PA41R4 SD-02 D35476</th>
<th>PA41R5 SD-03 D35477</th>
<th>PA41R6 SD-04 D35478</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Location:</td>
<td>Field Sample</td>
<td>Field Sample</td>
<td>Field Sample</td>
<td>Field Sample</td>
</tr>
<tr>
<td>Sample Identifier:</td>
<td>52.9</td>
<td>89.4</td>
<td>63.1</td>
<td>51.9</td>
</tr>
<tr>
<td>Sample Type:</td>
<td>Sediment</td>
<td>Sediment</td>
<td>Sediment</td>
<td>Sediment</td>
</tr>
<tr>
<td>Matrix:</td>
<td>% Solids:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Units:</td>
<td>ng/kg (dry)</td>
<td>ng/kg (dry)</td>
<td>ng/kg (dry)</td>
<td>ng/kg (dry)</td>
</tr>
<tr>
<td>Compounds</td>
<td>Result</td>
<td>Flag</td>
<td>EMPC/EDL/MDL*</td>
<td>Result</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>PCB-111</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-112</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-114</td>
<td>EMPC</td>
<td>J</td>
<td>7400</td>
<td>UM</td>
</tr>
<tr>
<td>PCB-118</td>
<td>500000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-120</td>
<td>9800</td>
<td>J</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-121</td>
<td>11000</td>
<td>J</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-122</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-123</td>
<td>EMPC</td>
<td>U</td>
<td>6700</td>
<td>UM</td>
</tr>
<tr>
<td>PCB-126</td>
<td>EMPC</td>
<td>U</td>
<td>6400</td>
<td>UM</td>
</tr>
<tr>
<td>PCB-127</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-128/166</td>
<td>75000</td>
<td>U</td>
<td>2200</td>
<td>U</td>
</tr>
<tr>
<td>PCB-129/138/163</td>
<td>700000</td>
<td>EB²</td>
<td>340</td>
<td>J</td>
</tr>
<tr>
<td>PCB-130</td>
<td>38000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-131</td>
<td>6600</td>
<td>J</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-132</td>
<td>190000</td>
<td>EB²</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-133</td>
<td>48000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-134</td>
<td>78000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-135/151</td>
<td>280000</td>
<td>U</td>
<td>150</td>
<td>J</td>
</tr>
<tr>
<td>PCB-136</td>
<td>86000</td>
<td>EB²</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-137</td>
<td>27000</td>
<td>J</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-139/140</td>
<td>75000</td>
<td>U</td>
<td>2200</td>
<td>U</td>
</tr>
<tr>
<td>PCB-141</td>
<td>45000</td>
<td>EB²</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-142</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-143</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-144</td>
<td>10000</td>
<td>J</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-145</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-146</td>
<td>130000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-147/149</td>
<td>610000</td>
<td>U</td>
<td>2200</td>
<td>U</td>
</tr>
<tr>
<td>PCB-148</td>
<td>18000</td>
<td>J</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-150</td>
<td>9200</td>
<td>J</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-152</td>
<td>12000</td>
<td>J</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-153/168</td>
<td>460000</td>
<td>U</td>
<td>2200</td>
<td>U</td>
</tr>
<tr>
<td>PCB-154</td>
<td>48000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-155</td>
<td>2400</td>
<td>J</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-156/157</td>
<td>78000</td>
<td>U</td>
<td>2200</td>
<td>U</td>
</tr>
<tr>
<td>PCB-158</td>
<td>42000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-159</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-160</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-161</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-162</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-164</td>
<td>34000</td>
<td>J</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-165</td>
<td>7000</td>
<td>J</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-167</td>
<td>25000</td>
<td>J</td>
<td>1100</td>
<td>U</td>
</tr>
<tr>
<td>PCB-169</td>
<td>EMPC</td>
<td>U</td>
<td>5300</td>
<td>UM</td>
</tr>
<tr>
<td>PCB-170</td>
<td>110000</td>
<td>EB²</td>
<td>1100</td>
<td>J</td>
</tr>
<tr>
<td>PCB-171/173</td>
<td>33000</td>
<td>U</td>
<td>2200</td>
<td>U</td>
</tr>
<tr>
<td>PCB-172</td>
<td>24000</td>
<td>J</td>
<td>1100</td>
<td>U</td>
</tr>
</tbody>
</table>
TABLE 2

ESAT GENERATED DATA SUMMARY TABLE - VALIDATED RESULTS

LOWER NEPONSET RIVER PCB5 SITE

SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Sample No.:</th>
<th>PA41R3</th>
<th>PA41R4</th>
<th>PA41R5</th>
<th>PA41R6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site: Lower Neponset River</td>
<td>SD-01</td>
<td>SD-02</td>
<td>SD-03</td>
<td>SD-04</td>
</tr>
<tr>
<td>Lab: Cape Fear Analytical</td>
<td>D35475</td>
<td>D35476</td>
<td>D35477</td>
<td>D35478</td>
</tr>
<tr>
<td>Case: 47773</td>
<td>Field Sample</td>
<td>Field Sample</td>
<td>Field Sample</td>
<td>Field Sample</td>
</tr>
<tr>
<td>SDG: PA41R3</td>
<td>Sediment</td>
<td>Sediment</td>
<td>Sediment</td>
<td>Sediment</td>
</tr>
<tr>
<td>Method: HRSM01.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis: 209 CB Congeners</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CL#</th>
<th>Compounds</th>
<th>Result</th>
<th>Flag</th>
<th>EMPC/EDL/MDL</th>
<th>Result</th>
<th>Flag</th>
<th>EMPC/EDL/MDL</th>
<th>Result</th>
<th>Flag</th>
<th>EMPC/EDL/MDL</th>
<th>Result</th>
<th>Flag</th>
<th>EMPC/EDL/MDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>PCB-174</td>
<td>75000</td>
<td>EB^2</td>
<td>120</td>
<td>J EB^2</td>
<td>34000</td>
<td>EB^2</td>
<td>35000</td>
<td>EB^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-175</td>
<td>4100</td>
<td>J</td>
<td>1100</td>
<td>U</td>
<td>1700</td>
<td></td>
<td>1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-176</td>
<td>11000</td>
<td>J</td>
<td>1100</td>
<td>U</td>
<td>4700</td>
<td></td>
<td>5600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-177</td>
<td>75000</td>
<td>J</td>
<td>1100</td>
<td>U</td>
<td>22000</td>
<td></td>
<td>25000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-178</td>
<td>49000</td>
<td>J</td>
<td>1100</td>
<td>U</td>
<td>7800</td>
<td></td>
<td>9400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-179</td>
<td>51000</td>
<td>J</td>
<td>58</td>
<td></td>
<td>15000</td>
<td></td>
<td>18000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-180/193</td>
<td>240000</td>
<td></td>
<td>2200</td>
<td>U^1</td>
<td>79000</td>
<td></td>
<td>83000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-181</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>480</td>
<td>J</td>
<td>310</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-182</td>
<td>3100</td>
<td>J</td>
<td>1100</td>
<td>U</td>
<td>260</td>
<td>J</td>
<td>340</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-183/185</td>
<td>58000</td>
<td>J EB^2</td>
<td>2200</td>
<td>U</td>
<td>23000</td>
<td>EB^2</td>
<td>24000</td>
<td>EB^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-184</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>1600</td>
<td>U</td>
<td>67</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-186</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>1600</td>
<td>U</td>
<td>1900</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-187</td>
<td>160000</td>
<td>J</td>
<td>170</td>
<td>J</td>
<td>42000</td>
<td></td>
<td>48000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-188</td>
<td>4100</td>
<td>J</td>
<td>1100</td>
<td>U</td>
<td>81</td>
<td>J</td>
<td>80</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-189</td>
<td>8400</td>
<td>J</td>
<td>UM 110</td>
<td>2300</td>
<td></td>
<td>2200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-190</td>
<td>37000</td>
<td>U^1</td>
<td>1100</td>
<td>U</td>
<td>8800</td>
<td></td>
<td>8500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-191</td>
<td>37000</td>
<td>U^1</td>
<td>1100</td>
<td>U</td>
<td>1600</td>
<td>U^1</td>
<td>1900</td>
<td>U^1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-192</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>1600</td>
<td>U</td>
<td>1900</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-194</td>
<td>120000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>24000</td>
<td></td>
<td>30000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-195</td>
<td>38000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>8900</td>
<td></td>
<td>11000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-196</td>
<td>43000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>10000</td>
<td></td>
<td>12000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-197/200</td>
<td>75000</td>
<td>U^1</td>
<td>2200</td>
<td>U</td>
<td>3100</td>
<td></td>
<td>3700</td>
<td>U^1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-198/199</td>
<td>83000</td>
<td>EB^2</td>
<td>2200</td>
<td>U</td>
<td>23000</td>
<td>EB^2</td>
<td>26000</td>
<td>EB^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-201</td>
<td>8800</td>
<td>J</td>
<td>1100</td>
<td>U</td>
<td>2400</td>
<td></td>
<td>2900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-202</td>
<td>15000</td>
<td>J</td>
<td>1100</td>
<td>U</td>
<td>4600</td>
<td></td>
<td>5100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-203</td>
<td>50000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>14000</td>
<td></td>
<td>15000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-204</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>1600</td>
<td>U</td>
<td>1900</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-205</td>
<td>37000</td>
<td>U^1</td>
<td>1100</td>
<td>U</td>
<td>1600</td>
<td>U^1</td>
<td>1900</td>
<td>U^1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PCB-206</td>
<td>40000</td>
<td>EB^2</td>
<td>1100</td>
<td>U</td>
<td>12000</td>
<td>EB^2</td>
<td>13000</td>
<td>EB^2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PCB-207</td>
<td>4000</td>
<td>J</td>
<td>1100</td>
<td>U</td>
<td>1200</td>
<td>J</td>
<td>1300</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PCB-208</td>
<td>6100</td>
<td>J</td>
<td>1100</td>
<td>U</td>
<td>3800</td>
<td></td>
<td>4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>PCB-209</td>
<td>37000</td>
<td>U</td>
<td>1100</td>
<td>U</td>
<td>4900</td>
<td></td>
<td>6600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Units: ng/kg (dry)
TABLE 2

ESAT GENERATED DATA SUMMARY TABLE - VALIDATED RESULTS

LOWER NEPONSET RIVER PCBS SITE

SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Sample No.:</th>
<th>PA41R3</th>
<th>PA41R4</th>
<th>PA41R5</th>
<th>PA41R6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Location:</td>
<td>SD-01</td>
<td>SD-02</td>
<td>SD-03</td>
<td>SD-04</td>
</tr>
<tr>
<td>Sample Identifier:</td>
<td>D35475</td>
<td>D35476</td>
<td>D35477</td>
<td>D35478</td>
</tr>
<tr>
<td>Sample Type:</td>
<td>Field Sample</td>
<td>Field Sample</td>
<td>Field Sample</td>
<td>Field Sample</td>
</tr>
<tr>
<td>Matrix:</td>
<td>Sediment</td>
<td>Sediment</td>
<td>Sediment</td>
<td>Sediment</td>
</tr>
<tr>
<td>Dilution Factor:</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>% Solids:</td>
<td>52.9</td>
<td>89.4</td>
<td>63.1</td>
<td>51.9</td>
</tr>
<tr>
<td>Units:</td>
<td>ng/kg (dry)</td>
<td>ng/kg (dry)</td>
<td>ng/kg (dry)</td>
<td>ng/kg (dry)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLS</th>
<th>Compounds</th>
<th>Result</th>
<th>Flag</th>
<th>EMPC/EDL/MDL</th>
<th>Result</th>
<th>Flag</th>
<th>EMPC/EDL/MDL</th>
<th>Result</th>
<th>Flag</th>
<th>EMPC/EDL/MDL</th>
<th>Result</th>
<th>Flag</th>
<th>EMPC/EDL/MDL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total MoCB</td>
<td>3300000</td>
<td>J</td>
<td>ND</td>
<td>59000</td>
<td>J</td>
<td>94000</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total DiCB</td>
<td>20000000</td>
<td>J</td>
<td>650</td>
<td>J</td>
<td>150000</td>
<td>J</td>
<td>3900000</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total TrCB</td>
<td>23000000</td>
<td>J</td>
<td>680</td>
<td>J</td>
<td>1100000</td>
<td>J</td>
<td>18000000</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total TeCB</td>
<td>14000000</td>
<td>J</td>
<td>1870</td>
<td>J</td>
<td>1500000</td>
<td>J</td>
<td>17000000</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total PeCB</td>
<td>4900000</td>
<td>J</td>
<td>560</td>
<td>J</td>
<td>4600000</td>
<td>J</td>
<td>5200000</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total HxCB</td>
<td>3100000</td>
<td>J</td>
<td>490</td>
<td>J</td>
<td>1000000</td>
<td>J</td>
<td>9900000</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total HxCB</td>
<td>91000</td>
<td>J</td>
<td>350</td>
<td>J</td>
<td>300000</td>
<td>J</td>
<td>3200000</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total OcCB</td>
<td>3600000</td>
<td>J</td>
<td>ND</td>
<td>90000</td>
<td>J</td>
<td>100000</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total NoCB</td>
<td>50000</td>
<td>J</td>
<td>ND</td>
<td>17000</td>
<td>J</td>
<td>18000</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DeCB</td>
<td>ND</td>
<td>ND</td>
<td>4900</td>
<td>J</td>
<td>6600</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total PCBs</td>
<td>70000000</td>
<td>J</td>
<td>4600</td>
<td>J</td>
<td>33000000</td>
<td>J</td>
<td>46000000</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total TEQ#</td>
<td>21</td>
<td>J</td>
<td>0.0063</td>
<td>J</td>
<td>320</td>
<td>J</td>
<td>270</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The WHO Toxic congeners are identified by the highlighted background.

* The values in this column are either the Estimated Detection Limits (EDL), Method Detection Limits (MDL), or the Estimated Maximum Possible Concentration (EMPC). The EMPC results are flagged as “EMPC” in the Result column and are qualified with a "J" since they are estimated values. EMPC results are not included in the Total Homologues.

The Toxic Equivalent concentrations are calculated with the Toxicity Equivalency Factors (TEFs) found in "The 2005 World Health Organization Re-evaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds, Society of Toxicology, July 7, 2006. The TE values are calculated using the final validated data and include the positive results and estimated values. The TE values are estimated (J) when any individual congener is estimated. The TE calculations do not include RL values.

^ Total PCBs are the sum of the total homologues.

TIER 2/S4VEM DATA VALIDATION QUALIFIER COMMENTS:

J Sample concentrations reported below the laboratory reporting limit are flagged (J) on the Data Summary Table as estimated values with no superscripts.

1 Blank contamination; the positive sample results that are less than the CRQL are reported as non-detects (U) at the CRQL; positive sample results greater than the CRQL but less than the blank result are reported as non-detect (U) at the adjusted blank concentration.

2 Equipment blank contamination; detects for the affected compounds are flagged (EB) on the Data Summary Table to indicate the presence of an unknown amount of sampling error as evidenced by the aqueous equipment blank contamination.

3 LCS/LCSD recovery above QC limits; estimate high (J+) all positive results for PCB 1 and PCB 4 in all sediment samples.

4 Congener exceeded the instrument calibration range; estimate (J) the affected analytes in samples PA41R8 and PA41R9.

5 Labeled compound ion abundance ratio criteria not met; estimate (J) positive results for PCB 1 and PCB 2 in sample PA41R9.

6 Field duplicate precision outside criteria; estimate (J, UJ) the positive results and non-detects for PCB 1 in all sediment samples.
TABLE 2

ESAT GENERATED DATA SUMMARY TABLE - VALIDATED RESULTS

LOWER NEPONSET RIVER PCB SITE

SEPTEMBER 2018

Site: Lower Neponset River
Lab: Cape Fear Analytical
Case: 47773
SDG: PA41R3
Method HRSM01.2
Analysis: 209 CB Congeners

<table>
<thead>
<tr>
<th>CL#</th>
<th>Compounds</th>
<th>Result (ng/kg (dry))</th>
<th>Flag</th>
<th>EMPC/EDL*</th>
<th>Result (ng/kg (dry))</th>
<th>Flag</th>
<th>EMPC/EDL*</th>
<th>Result (ng/kg (dry))</th>
<th>Flag</th>
<th>EMPC/EDL*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PCB-1</td>
<td>38000000</td>
<td>J³⁵</td>
<td></td>
<td>47000000</td>
<td>J³⁵</td>
<td></td>
<td>1400000000</td>
<td>J³⁵</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-2</td>
<td>8000000</td>
<td></td>
<td></td>
<td>3800000</td>
<td></td>
<td></td>
<td>3200000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-3</td>
<td>29000000</td>
<td></td>
<td></td>
<td>8900000</td>
<td></td>
<td></td>
<td>100000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-4</td>
<td>63000000</td>
<td>J³⁵</td>
<td></td>
<td>200000000</td>
<td>J³⁵</td>
<td></td>
<td>2500000000</td>
<td>J³⁵</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-5</td>
<td>2700000</td>
<td></td>
<td></td>
<td>3600000</td>
<td>U</td>
<td></td>
<td>4300000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-6</td>
<td>69000000</td>
<td></td>
<td></td>
<td>28000000</td>
<td></td>
<td></td>
<td>300000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-7</td>
<td>11000000</td>
<td></td>
<td></td>
<td>3000000</td>
<td></td>
<td></td>
<td>4900000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-8</td>
<td>28000000</td>
<td></td>
<td></td>
<td>190000000</td>
<td>J³</td>
<td></td>
<td>1600000000</td>
<td>J³</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-9</td>
<td>3900000</td>
<td></td>
<td></td>
<td>9100000</td>
<td></td>
<td></td>
<td>16000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-10</td>
<td>56000000</td>
<td></td>
<td></td>
<td>120000000</td>
<td></td>
<td></td>
<td>2300000000</td>
<td>J³</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-11</td>
<td>44000000</td>
<td>EB²</td>
<td></td>
<td>120000000</td>
<td>EB²</td>
<td></td>
<td>2300000000</td>
<td>EB²</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-12/13</td>
<td>8000000</td>
<td></td>
<td></td>
<td>22000000</td>
<td></td>
<td></td>
<td>380000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-14</td>
<td>4500000</td>
<td>U</td>
<td></td>
<td>3600000</td>
<td>U</td>
<td></td>
<td>4800000</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-15</td>
<td>20000000</td>
<td></td>
<td></td>
<td>280000000</td>
<td></td>
<td></td>
<td>720000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-16</td>
<td>9200000</td>
<td></td>
<td></td>
<td>31000000</td>
<td></td>
<td></td>
<td>140000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-17</td>
<td>150000000</td>
<td></td>
<td></td>
<td>920000000</td>
<td>J³</td>
<td></td>
<td>6000000000</td>
<td>J³</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-18/30</td>
<td>28000000</td>
<td></td>
<td></td>
<td>190000000</td>
<td></td>
<td></td>
<td>890000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-19</td>
<td>120000000</td>
<td></td>
<td></td>
<td>410000000</td>
<td></td>
<td></td>
<td>3900000000</td>
<td>J³</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-20/28</td>
<td>36000000</td>
<td></td>
<td></td>
<td>730000000</td>
<td></td>
<td></td>
<td>130000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-21/33</td>
<td>18000000</td>
<td>EB²</td>
<td></td>
<td>7200000</td>
<td>U</td>
<td></td>
<td>9700000</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-22</td>
<td>7100000</td>
<td></td>
<td></td>
<td>130000000</td>
<td></td>
<td></td>
<td>2500000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-23</td>
<td>4900000</td>
<td></td>
<td></td>
<td>1700000</td>
<td></td>
<td></td>
<td>220000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-24</td>
<td>4500000</td>
<td>U</td>
<td></td>
<td>3600000</td>
<td>U</td>
<td></td>
<td>140000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-25</td>
<td>35000000</td>
<td></td>
<td></td>
<td>210000000</td>
<td></td>
<td></td>
<td>1400000000</td>
<td>J³</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-26/29</td>
<td>64000000</td>
<td></td>
<td></td>
<td>180000000</td>
<td></td>
<td></td>
<td>2500000000</td>
<td>J³</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-27</td>
<td>68000000</td>
<td></td>
<td></td>
<td>2500000000</td>
<td></td>
<td></td>
<td>2700000000</td>
<td>J³</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-31</td>
<td>59000000</td>
<td></td>
<td></td>
<td>1800000000</td>
<td></td>
<td></td>
<td>2500000000</td>
<td>J³</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-32</td>
<td>99000000</td>
<td></td>
<td></td>
<td>4800000000</td>
<td></td>
<td></td>
<td>4000000000</td>
<td>J³</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-34</td>
<td>46000000</td>
<td></td>
<td></td>
<td>100000000</td>
<td></td>
<td></td>
<td>1600000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-35</td>
<td>1400000</td>
<td>J</td>
<td></td>
<td>1100000</td>
<td></td>
<td></td>
<td>4800000</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-36</td>
<td>4500000</td>
<td>U</td>
<td></td>
<td>3600000</td>
<td>U</td>
<td></td>
<td>160000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-37</td>
<td>3200000</td>
<td></td>
<td></td>
<td>9600000</td>
<td></td>
<td></td>
<td>920000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-38</td>
<td>4500000</td>
<td>U</td>
<td></td>
<td>2800000</td>
<td>J</td>
<td></td>
<td>4800000</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PCB-39</td>
<td>4200000</td>
<td>J</td>
<td></td>
<td>2400000</td>
<td></td>
<td></td>
<td>2000000000</td>
<td>J³</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PCB-40/71</td>
<td>250000000</td>
<td></td>
<td></td>
<td>120000000</td>
<td></td>
<td></td>
<td>900000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PCB-41</td>
<td>4400000</td>
<td>J</td>
<td></td>
<td>130000000</td>
<td></td>
<td></td>
<td>1200000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PCB-42</td>
<td>11000000</td>
<td></td>
<td></td>
<td>450000000</td>
<td></td>
<td></td>
<td>3900000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PCB-43</td>
<td>99000000</td>
<td></td>
<td></td>
<td>310000000</td>
<td></td>
<td></td>
<td>3200000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PCB-44/47/65</td>
<td>78000000</td>
<td></td>
<td></td>
<td>310000000</td>
<td></td>
<td></td>
<td>2800000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PCB-45/51</td>
<td>280000000</td>
<td></td>
<td></td>
<td>980000000</td>
<td></td>
<td></td>
<td>1100000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PCB-46</td>
<td>30000000</td>
<td></td>
<td></td>
<td>110000000</td>
<td></td>
<td></td>
<td>1100000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PCB-48</td>
<td>9900000</td>
<td></td>
<td></td>
<td>410000000</td>
<td></td>
<td></td>
<td>4800000000</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PCB-49/69</td>
<td>560000000</td>
<td></td>
<td></td>
<td>230000000</td>
<td></td>
<td></td>
<td>2100000000</td>
<td>J³</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PCB-50/53</td>
<td>360000000</td>
<td></td>
<td></td>
<td>170000000</td>
<td></td>
<td></td>
<td>1200000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PCB-52</td>
<td>550000000</td>
<td></td>
<td></td>
<td>1900000000</td>
<td></td>
<td></td>
<td>2000000000</td>
<td>J³</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2

ESAT GENERATED DATA SUMMARY TABLE - VALIDATED RESULTS

LOWER NEPONSET RIVER PCBs SITE

SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Sample No.:</th>
<th>Sample Identifier:</th>
<th>Sample Type:</th>
<th>Matrix:</th>
<th>Dilution Factor:</th>
<th>% Solids:</th>
<th>Units:</th>
<th>PCB-54</th>
<th>230000</th>
<th>810000</th>
<th>7300000</th>
<th>1600 U</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-55</td>
<td>45000</td>
<td>U</td>
<td>50000</td>
<td>48000</td>
<td>U</td>
<td>1400 J</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-56</td>
<td>110000</td>
<td>EB</td>
<td>490000</td>
<td>160000</td>
<td>EB</td>
<td>52000 EB</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-57</td>
<td>290000</td>
<td>U</td>
<td>910000</td>
<td>11000000</td>
<td>U</td>
<td>50 J</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-58</td>
<td>45000</td>
<td>U</td>
<td>48000</td>
<td>77000</td>
<td>J</td>
<td>770 J</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-59/62/75</td>
<td>790000</td>
<td>U</td>
<td>220000</td>
<td>2800000</td>
<td>J</td>
<td>12000</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-60</td>
<td>20000</td>
<td>J</td>
<td>15000</td>
<td>48000</td>
<td>U</td>
<td>3100</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-61/70/74/76</td>
<td>840000</td>
<td>EB</td>
<td>530000</td>
<td>20000000</td>
<td>EB</td>
<td>20000 EB</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-63</td>
<td>65000</td>
<td>U</td>
<td>290000</td>
<td>2800000</td>
<td>U</td>
<td>5600</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-64</td>
<td>200000</td>
<td>U</td>
<td>480000</td>
<td>8900000</td>
<td>U</td>
<td>49000</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-66</td>
<td>410000</td>
<td>EB</td>
<td>290000</td>
<td>9500000</td>
<td>EB</td>
<td>13000 EB</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-67</td>
<td>68000</td>
<td>U</td>
<td>360000</td>
<td>1800000</td>
<td>U</td>
<td>4300</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-68</td>
<td>220000</td>
<td>U</td>
<td>570000</td>
<td>7400000</td>
<td>U</td>
<td>1600</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-72</td>
<td>250000</td>
<td>U</td>
<td>730000</td>
<td>9300000</td>
<td>J</td>
<td>2900</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-73</td>
<td>45000</td>
<td>U</td>
<td>630000</td>
<td>6400000</td>
<td>U</td>
<td>1700</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-77</td>
<td>100000</td>
<td>U</td>
<td>540000</td>
<td>2300000</td>
<td>J</td>
<td>12000</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-78</td>
<td>45000</td>
<td>U</td>
<td>360000</td>
<td>480000</td>
<td>U</td>
<td>1600</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-79</td>
<td>45000</td>
<td>U</td>
<td>360000</td>
<td>480000</td>
<td>U</td>
<td>1600</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-80</td>
<td>45000</td>
<td>U</td>
<td>360000</td>
<td>480000</td>
<td>U</td>
<td>1600</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-81</td>
<td>100000</td>
<td>U</td>
<td>170000</td>
<td>1600000</td>
<td>J</td>
<td>280 J</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-82</td>
<td>64000</td>
<td>U</td>
<td>200000</td>
<td>1100000</td>
<td>U</td>
<td>13000</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-83</td>
<td>280000</td>
<td>U</td>
<td>930000</td>
<td>1300000</td>
<td>J</td>
<td>12000</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-84</td>
<td>660000</td>
<td>EB</td>
<td>150000</td>
<td>2600000</td>
<td>EB</td>
<td>42000 EB</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-85/116/117</td>
<td>250000</td>
<td>U</td>
<td>830000</td>
<td>9700000</td>
<td>J</td>
<td>21000</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-86/87/97/109/119/125</td>
<td>550000</td>
<td>U</td>
<td>190000</td>
<td>1600000</td>
<td>J</td>
<td>94000</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-88/91</td>
<td>940000</td>
<td>U</td>
<td>300000</td>
<td>4100000</td>
<td>J</td>
<td>20000</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-89</td>
<td>48000</td>
<td>U</td>
<td>55000</td>
<td>1800000</td>
<td>J</td>
<td>2000</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-90/101/113</td>
<td>1200000</td>
<td>EB</td>
<td>310000</td>
<td>3800000</td>
<td>EB</td>
<td>15000 EB</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-92</td>
<td>1000000</td>
<td>U</td>
<td>260000</td>
<td>4200000</td>
<td>J</td>
<td>31000</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-93/100</td>
<td>210000</td>
<td>U</td>
<td>530000</td>
<td>8200000</td>
<td>J</td>
<td>1600</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-94</td>
<td>160000</td>
<td>U</td>
<td>450000</td>
<td>6900000</td>
<td>J</td>
<td>800</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-95</td>
<td>1800000</td>
<td>U</td>
<td>410000</td>
<td>6700000</td>
<td>J</td>
<td>110000</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-96</td>
<td>88000</td>
<td>U</td>
<td>240000</td>
<td>3900000</td>
<td>J</td>
<td>890</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-98/102</td>
<td>280000</td>
<td>U</td>
<td>890000</td>
<td>1200000</td>
<td>J</td>
<td>5500</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-99</td>
<td>680000</td>
<td>EB</td>
<td>230000</td>
<td>2100000</td>
<td>J</td>
<td>76000 EB</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-103</td>
<td>110000</td>
<td>U</td>
<td>280000</td>
<td>4400000</td>
<td>J</td>
<td>1800</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-104</td>
<td>45000</td>
<td>U</td>
<td>16000</td>
<td>2600000</td>
<td>J</td>
<td>68</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-105</td>
<td>98000</td>
<td>EB</td>
<td>770000</td>
<td>1200000</td>
<td>EB</td>
<td>23000 EB</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-106</td>
<td>45000</td>
<td>U</td>
<td>360000</td>
<td>480000</td>
<td>J</td>
<td>1600</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-107</td>
<td>98000</td>
<td>U</td>
<td>430000</td>
<td>3200000</td>
<td>J</td>
<td>11000</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-108/124</td>
<td>91000</td>
<td>U</td>
<td>72000</td>
<td>97000</td>
<td>J</td>
<td>3900</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-110/115</td>
<td>270000</td>
<td>U</td>
<td>740000</td>
<td>1100000</td>
<td>U</td>
<td>180000</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- **CL#:** Compound List Number
- **Compounds:** List of compounds detected in the samples
- **Result:** Concentration measured in ng/kg (dry)
- **Flag:** Indicator of whether the compound was detected or not
- **EMPC/EDL/MDL:** Limits for detection
- **Site:** Lower Neponset River
- **Lab:** Cape Fear Analytical
- **Case:** 47773
- **SDG:** PA41R3
- **Method:** HRSM01.2
- **Analysis:** 209 CB Congeners
TABLE 2

ESAT GENERATED DATA SUMMARY TABLE - VALIDATED RESULTS

LOWER NEPONSET RIVER PCB SITE

SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Sample No.:</th>
<th>PA41R7</th>
<th>PA41R8</th>
<th>PA41R9</th>
<th>PA41S0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL#</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-111</td>
<td>45000</td>
<td>U</td>
<td>19000</td>
</tr>
<tr>
<td>5</td>
<td>PCB-112</td>
<td>45000</td>
<td>U</td>
<td>36000</td>
</tr>
<tr>
<td>5</td>
<td>PCB-114</td>
<td>EMPC</td>
<td>J</td>
<td>8200</td>
</tr>
<tr>
<td>5</td>
<td>PCB-118</td>
<td>640000</td>
<td>U</td>
<td>310000</td>
</tr>
<tr>
<td>5</td>
<td>PCB-120</td>
<td>17000</td>
<td>J</td>
<td>33000</td>
</tr>
<tr>
<td>5</td>
<td>PCB-121</td>
<td>45000</td>
<td>U</td>
<td>7700</td>
</tr>
<tr>
<td>5</td>
<td>PCB-122</td>
<td>45000</td>
<td>U</td>
<td>22000</td>
</tr>
<tr>
<td>5</td>
<td>PCB-123</td>
<td>UM</td>
<td>8100</td>
<td>38000</td>
</tr>
<tr>
<td>5</td>
<td>PCB-126</td>
<td>U</td>
<td>8600</td>
<td>11000</td>
</tr>
<tr>
<td>5</td>
<td>PCB-127</td>
<td>45000</td>
<td>U</td>
<td>36000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-128/166</td>
<td>91000</td>
<td>U</td>
<td>26000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-129/138/163</td>
<td>73000</td>
<td>EB2</td>
<td>210000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-130</td>
<td>83000</td>
<td>U</td>
<td>150000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-131</td>
<td>45000</td>
<td>U</td>
<td>2400</td>
</tr>
<tr>
<td>6</td>
<td>PCB-132</td>
<td>34000</td>
<td>EB2</td>
<td>55000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-133</td>
<td>10000</td>
<td>U</td>
<td>9900</td>
</tr>
<tr>
<td>6</td>
<td>PCB-134</td>
<td>11000</td>
<td>U</td>
<td>320000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-135/151</td>
<td>62000</td>
<td>U</td>
<td>110000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-136</td>
<td>16000</td>
<td>EB2</td>
<td>33000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-137</td>
<td>21000</td>
<td>U</td>
<td>10000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-139/140</td>
<td>34000</td>
<td>J</td>
<td>5900</td>
</tr>
<tr>
<td>6</td>
<td>PCB-141</td>
<td>41000</td>
<td>EB2</td>
<td>170000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-142</td>
<td>45000</td>
<td>U</td>
<td>36000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-143</td>
<td>45000</td>
<td>U</td>
<td>11000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-144</td>
<td>45000</td>
<td>U</td>
<td>54000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-145</td>
<td>45000</td>
<td>U</td>
<td>36000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-146</td>
<td>35000</td>
<td>U</td>
<td>38000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-147/149</td>
<td>82000</td>
<td>U</td>
<td>190000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-148</td>
<td>21000</td>
<td>J</td>
<td>20000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-150</td>
<td>9800</td>
<td>J</td>
<td>28000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-152</td>
<td>12000</td>
<td>J</td>
<td>29000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-153/168</td>
<td>53000</td>
<td>U</td>
<td>130000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-154</td>
<td>89000</td>
<td>U</td>
<td>120000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-155</td>
<td>45000</td>
<td>U</td>
<td>2500</td>
</tr>
<tr>
<td>6</td>
<td>PCB-156/157</td>
<td>91000</td>
<td>U</td>
<td>33000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-158</td>
<td>38000</td>
<td>J</td>
<td>180000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-159</td>
<td>45000</td>
<td>U</td>
<td>36000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-160</td>
<td>45000</td>
<td>U</td>
<td>36000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-161</td>
<td>45000</td>
<td>U</td>
<td>36000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-162</td>
<td>5500</td>
<td>U</td>
<td>10000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-164</td>
<td>30000</td>
<td>J</td>
<td>110000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-165</td>
<td>12000</td>
<td>J</td>
<td>12000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-167</td>
<td>20000</td>
<td>U</td>
<td>96000</td>
</tr>
<tr>
<td>6</td>
<td>PCB-169</td>
<td>30000</td>
<td>UM</td>
<td>6400</td>
</tr>
<tr>
<td>7</td>
<td>PCB-170</td>
<td>150000</td>
<td>EB2</td>
<td>49000</td>
</tr>
<tr>
<td>7</td>
<td>PCB-171/173</td>
<td>52000</td>
<td>J</td>
<td>140000</td>
</tr>
<tr>
<td>7</td>
<td>PCB-172</td>
<td>42000</td>
<td>J</td>
<td>9000</td>
</tr>
</tbody>
</table>

Site: Lower Neponset River Lab: Cape Fear Analytical Case: 47773 SDG: PA41R3 Method HRSM01.2 Analysis: 209 CB Congeners
<table>
<thead>
<tr>
<th>CL#</th>
<th>Compounds</th>
<th>Result</th>
<th>Flag</th>
<th>EMPC/EDL/MDL*</th>
<th>Result</th>
<th>Flag</th>
<th>EMPC/EDL/MDL*</th>
<th>Result</th>
<th>Flag</th>
<th>EMPC/EDL/MDL*</th>
<th>Result</th>
<th>Flag</th>
<th>EMPC/EDL/MDL*</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>PCB-174</td>
<td>170000</td>
<td>EB</td>
<td>370000</td>
<td>EB</td>
<td>580000</td>
<td>EB</td>
<td>160000</td>
<td>EB</td>
<td>160000</td>
<td>EB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-175</td>
<td>45000</td>
<td>U</td>
<td>20000</td>
<td>J</td>
<td>48000</td>
<td>U</td>
<td>650</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-176</td>
<td>32000</td>
<td>J</td>
<td>49000</td>
<td>J</td>
<td>130000</td>
<td>J</td>
<td>2100</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-177</td>
<td>190000</td>
<td>J</td>
<td>28000</td>
<td>J</td>
<td>720000</td>
<td>J</td>
<td>950</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-178</td>
<td>110000</td>
<td>J</td>
<td>13000</td>
<td>J</td>
<td>380000</td>
<td>J</td>
<td>3100</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-179</td>
<td>130000</td>
<td>J</td>
<td>21000</td>
<td>J</td>
<td>510000</td>
<td>J</td>
<td>6200</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-180/193</td>
<td>250000</td>
<td>J</td>
<td>100000</td>
<td>J</td>
<td>130000</td>
<td>J</td>
<td>36000</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-181</td>
<td>45000</td>
<td>U</td>
<td>8400</td>
<td>J</td>
<td>48000</td>
<td>U</td>
<td>330</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-182</td>
<td>12000</td>
<td>J</td>
<td>5200</td>
<td>J</td>
<td>48000</td>
<td>J</td>
<td>180</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-183/185</td>
<td>89000</td>
<td>J</td>
<td>270000</td>
<td>EB</td>
<td>350000</td>
<td>EB</td>
<td>11000</td>
<td>EB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-184</td>
<td>45000</td>
<td>U</td>
<td>36000</td>
<td>U</td>
<td>48000</td>
<td>U</td>
<td>1600</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-186</td>
<td>45000</td>
<td>U</td>
<td>36000</td>
<td>U</td>
<td>48000</td>
<td>U</td>
<td>1600</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-187</td>
<td>370000</td>
<td>J</td>
<td>580000</td>
<td>J</td>
<td>140000</td>
<td>J</td>
<td>17000</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-188</td>
<td>45000</td>
<td>U</td>
<td>4700</td>
<td>J</td>
<td>48000</td>
<td>U</td>
<td>58</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-189</td>
<td>12000</td>
<td>J</td>
<td>32000</td>
<td>J</td>
<td>360000</td>
<td>J</td>
<td>960</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-190</td>
<td>45000</td>
<td>U</td>
<td>12000</td>
<td>U</td>
<td>160000</td>
<td>U</td>
<td>3500</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-191</td>
<td>45000</td>
<td>U</td>
<td>36000</td>
<td>U</td>
<td>48000</td>
<td>U</td>
<td>1600</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-192</td>
<td>45000</td>
<td>U</td>
<td>36000</td>
<td>U</td>
<td>48000</td>
<td>U</td>
<td>1600</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-194</td>
<td>200000</td>
<td>J</td>
<td>370000</td>
<td>J</td>
<td>730000</td>
<td>J</td>
<td>8400</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-195</td>
<td>660000</td>
<td>J</td>
<td>140000</td>
<td>J</td>
<td>270000</td>
<td>J</td>
<td>2900</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-196</td>
<td>740000</td>
<td>J</td>
<td>150000</td>
<td>J</td>
<td>280000</td>
<td>J</td>
<td>4400</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-197/200</td>
<td>91000</td>
<td>U</td>
<td>72000</td>
<td>U</td>
<td>930000</td>
<td>U</td>
<td>3200</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-198/199</td>
<td>190000</td>
<td>E</td>
<td>300000</td>
<td>EB</td>
<td>720000</td>
<td>EB</td>
<td>11000</td>
<td>EB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-201</td>
<td>210000</td>
<td>J</td>
<td>340000</td>
<td>J</td>
<td>680000</td>
<td>J</td>
<td>1200</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-202</td>
<td>410000</td>
<td>J</td>
<td>610000</td>
<td>J</td>
<td>130000</td>
<td>J</td>
<td>2500</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-203</td>
<td>910000</td>
<td>J</td>
<td>180000</td>
<td>J</td>
<td>380000</td>
<td>J</td>
<td>6400</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-204</td>
<td>45000</td>
<td>U</td>
<td>36000</td>
<td>U</td>
<td>48000</td>
<td>U</td>
<td>1600</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-205</td>
<td>45000</td>
<td>U</td>
<td>36000</td>
<td>U</td>
<td>510000</td>
<td>U</td>
<td>1600</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PCB-206</td>
<td>860000</td>
<td>EB</td>
<td>130000</td>
<td>EB</td>
<td>280000</td>
<td>EB</td>
<td>6700</td>
<td>EB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PCB-207</td>
<td>910000</td>
<td>J</td>
<td>150000</td>
<td>J</td>
<td>480000</td>
<td>J</td>
<td>790</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PCB-208</td>
<td>230000</td>
<td>J</td>
<td>320000</td>
<td>J</td>
<td>880000</td>
<td>J</td>
<td>2300</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>PCB-209</td>
<td>45000</td>
<td>U</td>
<td>36000</td>
<td>U</td>
<td>550000</td>
<td>U</td>
<td>3300</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2
ESAT GENERATED DATA SUMMARY TABLE - VALIDATED RESULTS
LOWER NEPONSET RIVER PCBS SITE
SEPTEMBER 2018

Site: Lower Neponset River Lab: Cape Fear Analytical Case: 47773 SDG: PA41R3 Method HRSM01.2 Analysis: 209 CB Congeners

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample Location</th>
<th>Sample Identifier</th>
<th>Sample Type</th>
<th>Matrix</th>
<th>Dilution Factor</th>
<th>% Solids</th>
<th>Units</th>
<th>CL#</th>
<th>Compounds</th>
<th>Result</th>
<th>Flag</th>
<th>Result</th>
<th>Flag</th>
<th>Result</th>
<th>Flag</th>
<th>Result</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA41R7</td>
<td>SD-05</td>
<td>D35479</td>
<td>Field Sample</td>
<td>Sediment</td>
<td>1</td>
<td>42.9</td>
<td>ng/kg (dry)</td>
<td></td>
<td>Total MoCB</td>
<td>41000000</td>
<td>J</td>
<td>56000000</td>
<td>J</td>
<td>1500000000</td>
<td>J</td>
<td>49000</td>
<td>J</td>
</tr>
<tr>
<td>PA41R8</td>
<td>SD-06</td>
<td>D35480</td>
<td>Field Sample</td>
<td>Sediment</td>
<td>1</td>
<td>55.5</td>
<td>ng/kg (dry)</td>
<td></td>
<td>Total DiCB</td>
<td>110000000</td>
<td>J</td>
<td>470000000</td>
<td>J</td>
<td>470000000</td>
<td>J</td>
<td>280000</td>
<td>J</td>
</tr>
<tr>
<td>PA41R9</td>
<td>SD-07</td>
<td>D35481</td>
<td>Field Sample</td>
<td>Sediment</td>
<td>1</td>
<td>38.7</td>
<td>ng/kg (dry)</td>
<td></td>
<td>Total TeCB</td>
<td>36000000</td>
<td>J</td>
<td>150000000</td>
<td>J</td>
<td>1300000000</td>
<td>J</td>
<td>1000000</td>
<td>J</td>
</tr>
<tr>
<td>PA41S0</td>
<td>SD-08</td>
<td>D35482</td>
<td>Field Sample</td>
<td>Sediment</td>
<td>1</td>
<td>59.2</td>
<td>ng/kg (dry)</td>
<td></td>
<td>Total PeCB</td>
<td>120000000</td>
<td>J</td>
<td>350000000</td>
<td>J</td>
<td>440000000</td>
<td>J</td>
<td>970000</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total HxCB</td>
<td>42000000</td>
<td>J</td>
<td>98000000</td>
<td>J</td>
<td>1300000000</td>
<td>J</td>
<td>530000</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total HpCB</td>
<td>170000000</td>
<td>J</td>
<td>38000000</td>
<td>J</td>
<td>640000000</td>
<td>J</td>
<td>13000000</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total OcCB</td>
<td>68000000</td>
<td>J</td>
<td>120000000</td>
<td>J</td>
<td>270000000</td>
<td>J</td>
<td>37000000</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total NoCB</td>
<td>120000000</td>
<td>J</td>
<td>180000000</td>
<td>J</td>
<td>370000000</td>
<td>J</td>
<td>980000000</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DeCB</td>
<td>ND</td>
<td>ND</td>
<td>55000000</td>
<td>J</td>
<td>330000000</td>
<td>J</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total PCBs^</td>
<td>270000000</td>
<td>J</td>
<td>1,100000000</td>
<td>J</td>
<td>11000000000</td>
<td>J</td>
<td>390000000</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total TEQ#</td>
<td>33</td>
<td>1300</td>
<td>710</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The WHO Toxic congeners are identified by the highlighted background.

* The values in this column are either the Estimated Detection Limits (EDL), Method Detection Limits (MDL), or the Estimated Maximum Possible Concentration (EMPC). The EMPC results are flagged as “EMPC” in the Result column and are qualified with a “J” since they are estimated values. EMPC results are not included in the Total Homologues.

The Toxic Equivalent concentrations are calculated with the Toxicity Equivalency Factors (TEFs) found in "The 2005 World Health Organization Re-evaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds, Society of Toxicology, July 7, 2006. The TE values are calculated using the final validated data and include the positive results and estimated values. The TE values are estimated (J) when any individual congener is estimated. The TE calculations do not include RL values.

^ Total PCBs are the sum of the total homologues.

TIER 2/S4VEM DATA VALIDATION QUALIFIER COMMENTS:

1. Sample concentrations reported below the laboratory reporting limit are flagged (J) on the Data Summary Table as estimated values without superscripts.
2. Blank contamination; the positive sample results that are less than the CRQL are reported as non-detects (U) at the CRQL, positive sample results greater than the CRQL but less than the blank result are reported as non-detect (U) at the adjusted blank concentration.
3. Equipment blank contamination; detects for the affected compounds are flagged (EB) on the Data Summary Table to indicate the presence of an unknown amount of sampling error as evidenced by the aqueous equipment blank contamination.
4. LCS/LCSD recovery above QC limits; estimate high (J+) all positive results for PCB 1 and PCB 4 in all sediment samples.
5. Congener exceeded the instrument calibration range; estimate (J) the affected analytes in samples PA41R8 and PA41R9.
6. Field duplicate precision outside criteria; estimate (J, UJ) the positive results and non-detects for PCB 1 in all sediment samples.
TABLE 2

ESAT GENERATED DATA SUMMARY TABLE - VALIDATED RESULTS

LOWER NEPONSET RIVER PCBS SITE

SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Sample No.:</th>
<th>PA41S1</th>
<th>PA41S2</th>
<th>PA41S3</th>
<th>PA41S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Location:</td>
<td>SD-09</td>
<td>SD-10</td>
<td>SD-11</td>
<td>SD-12</td>
</tr>
<tr>
<td>Sample Identifier:</td>
<td>D35483</td>
<td>D35484</td>
<td>D35485</td>
<td>D35486</td>
</tr>
<tr>
<td>Sample Type:</td>
<td>Field Sample</td>
<td>Field Sample</td>
<td>Field Sample</td>
<td>Field Duplicate</td>
</tr>
<tr>
<td>Matrix:</td>
<td>Sediment</td>
<td>Sediment</td>
<td>Sediment</td>
<td>Sediment</td>
</tr>
<tr>
<td>Dilution Factor:</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>% Solids:</td>
<td>53.1</td>
<td>55.0</td>
<td>69.3</td>
<td>51.9</td>
</tr>
<tr>
<td>Units:</td>
<td>ng/kg (dry)</td>
<td>ng/kg (dry)</td>
<td>ng/kg (dry)</td>
<td>ng/kg (dry)</td>
</tr>
<tr>
<td>Result</td>
<td>EMPC/EDL/MD L*</td>
<td>Result</td>
<td>EMPC/EDL/MD L*</td>
<td>Result</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>PCB-1</td>
<td>43000</td>
<td>J</td>
<td>19000</td>
</tr>
<tr>
<td>2</td>
<td>PCB-2</td>
<td>260</td>
<td>J</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>PCB-3</td>
<td>4700</td>
<td>1700</td>
<td>U</td>
</tr>
<tr>
<td>4</td>
<td>PCB-4</td>
<td>100000</td>
<td>J</td>
<td>590000</td>
</tr>
<tr>
<td>5</td>
<td>PCB-5</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
</tr>
<tr>
<td>6</td>
<td>PCB-6</td>
<td>11000</td>
<td>1700</td>
<td>U</td>
</tr>
<tr>
<td>7</td>
<td>PCB-7</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
</tr>
<tr>
<td>8</td>
<td>PCB-8</td>
<td>60000</td>
<td>39000</td>
<td>U</td>
</tr>
<tr>
<td>9</td>
<td>PCB-9</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
</tr>
<tr>
<td>10</td>
<td>PCB-10</td>
<td>5300</td>
<td>1700</td>
<td>U</td>
</tr>
<tr>
<td>11</td>
<td>PCB-11</td>
<td>1500</td>
<td>J</td>
<td>1100</td>
</tr>
<tr>
<td>12</td>
<td>PCB-12/13</td>
<td>3700</td>
<td>U</td>
<td>3400</td>
</tr>
<tr>
<td>13</td>
<td>PCB-14</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
</tr>
<tr>
<td>14</td>
<td>PCB-15</td>
<td>7300</td>
<td>4400</td>
<td>U</td>
</tr>
<tr>
<td>15</td>
<td>PCB-16</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
</tr>
<tr>
<td>16</td>
<td>PCB-17</td>
<td>24000</td>
<td>15000</td>
<td>U</td>
</tr>
<tr>
<td>17</td>
<td>PCB-18/30</td>
<td>6500</td>
<td>3400</td>
<td>U</td>
</tr>
<tr>
<td>18</td>
<td>PCB-19</td>
<td>16000</td>
<td>9000</td>
<td>U</td>
</tr>
<tr>
<td>19</td>
<td>PCB-20/28</td>
<td>16000</td>
<td>8800</td>
<td>U</td>
</tr>
<tr>
<td>20</td>
<td>PCB-21/33</td>
<td>1400</td>
<td>J</td>
<td>830</td>
</tr>
<tr>
<td>21</td>
<td>PCB-22</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
</tr>
<tr>
<td>22</td>
<td>PCB-23</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
</tr>
<tr>
<td>23</td>
<td>PCB-24</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
</tr>
<tr>
<td>24</td>
<td>PCB-25</td>
<td>5800</td>
<td>1700</td>
<td>U</td>
</tr>
<tr>
<td>25</td>
<td>PCB-26/29</td>
<td>7600</td>
<td>3400</td>
<td>U</td>
</tr>
<tr>
<td>26</td>
<td>PCB-27</td>
<td>8000</td>
<td>1700</td>
<td>U</td>
</tr>
<tr>
<td>27</td>
<td>PCB-31</td>
<td>9000</td>
<td>3700</td>
<td>U</td>
</tr>
<tr>
<td>28</td>
<td>PCB-32</td>
<td>13000</td>
<td>7100</td>
<td>U</td>
</tr>
<tr>
<td>29</td>
<td>PCB-34</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
</tr>
<tr>
<td>30</td>
<td>PCB-35</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
</tr>
<tr>
<td>31</td>
<td>PCB-36</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
</tr>
<tr>
<td>32</td>
<td>PCB-37</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
</tr>
<tr>
<td>33</td>
<td>PCB-38</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
</tr>
<tr>
<td>34</td>
<td>PCB-39</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
</tr>
<tr>
<td>35</td>
<td>PCB-40/71</td>
<td>4900</td>
<td>3400</td>
<td>U</td>
</tr>
<tr>
<td>36</td>
<td>PCB-41</td>
<td>320</td>
<td>J</td>
<td>540</td>
</tr>
<tr>
<td>37</td>
<td>PCB-42</td>
<td>2600</td>
<td>1700</td>
<td>U</td>
</tr>
<tr>
<td>38</td>
<td>PCB-43</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
</tr>
<tr>
<td>39</td>
<td>PCB-44/47/65</td>
<td>14000</td>
<td>7000</td>
<td>120000000</td>
</tr>
<tr>
<td>40</td>
<td>PCB-45/51</td>
<td>3900</td>
<td>3400</td>
<td>U</td>
</tr>
<tr>
<td>41</td>
<td>PCB-46</td>
<td>880</td>
<td>J</td>
<td>740</td>
</tr>
<tr>
<td>42</td>
<td>PCB-48</td>
<td>510</td>
<td>J</td>
<td>310</td>
</tr>
<tr>
<td>43</td>
<td>PCB-49/69</td>
<td>11000</td>
<td>4400</td>
<td>93000000</td>
</tr>
<tr>
<td>44</td>
<td>PCB-50/53</td>
<td>5900</td>
<td>3400</td>
<td>U</td>
</tr>
<tr>
<td>45</td>
<td>PCB-52</td>
<td>17000</td>
<td>16000</td>
<td>99000000</td>
</tr>
</tbody>
</table>

Sample No.: SD-09, SD-10, SD-11, SD-12

Sample Identifier: D35483, D35484, D35485, D35486

Sample Type: Field Sample, Field Sample, Field Sample, Field Duplicate

Matrix: Sediment, Sediment, Sediment, Sediment

Dilution Factor: 1, 1, 1, 1

% Solids: 53.1, 55.0, 69.3, 51.9

Units: ng/kg (dry)
TABLE 2

ESAT GENERATED DATA SUMMARY TABLE - VALIDATED RESULTS

LOWER NEPONSET RIVER PCB SITE

Site: Lower Neponset River
Lab: Cape Fear Analytical
Case: 47773
SDG: PA41R3
Method: HRSM01.2
Analysis: 209 CB Congeners

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample Identifier</th>
<th>Sample Type</th>
<th>Matrix</th>
<th>Dilution Factor</th>
<th>Units</th>
<th>PCB-54</th>
<th>Result</th>
<th>Flag</th>
<th>PCB-55</th>
<th>Result</th>
<th>Flag</th>
<th>PCB-56</th>
<th>Result</th>
<th>Flag</th>
<th>PCB-57</th>
<th>Result</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>PCB-54</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
<td>U</td>
<td>190000</td>
<td></td>
<td></td>
<td>1800</td>
<td>U</td>
<td>69000</td>
<td></td>
<td></td>
<td></td>
<td>1200</td>
<td>J</td>
<td>EB</td>
</tr>
<tr>
<td>4</td>
<td>PCB-55</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
<td>U</td>
<td>69000</td>
<td></td>
<td></td>
<td>1800</td>
<td>U</td>
<td>90</td>
<td>220000</td>
<td></td>
<td></td>
<td>170000</td>
<td>EB</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-56</td>
<td>1200</td>
<td>J EB</td>
<td>1100</td>
<td>J EB</td>
<td>160000</td>
<td>EB</td>
<td></td>
<td>340</td>
<td>J</td>
<td>37000</td>
<td>8500</td>
<td></td>
<td></td>
<td>30000</td>
<td>EB</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-57</td>
<td>340</td>
<td>J</td>
<td>90</td>
<td>J</td>
<td>220000</td>
<td></td>
<td></td>
<td>1900</td>
<td>J</td>
<td>17000</td>
<td></td>
<td></td>
<td></td>
<td>34000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-58</td>
<td>1800</td>
<td>U</td>
<td>90</td>
<td>J</td>
<td>37000</td>
<td></td>
<td></td>
<td>1800</td>
<td>J</td>
<td>17000</td>
<td></td>
<td></td>
<td></td>
<td>8500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-59/62/75</td>
<td>5500</td>
<td>U</td>
<td>5100</td>
<td>U</td>
<td>940000</td>
<td></td>
<td></td>
<td>5200</td>
<td>U</td>
<td>80000</td>
<td></td>
<td></td>
<td></td>
<td>250000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-60</td>
<td>320</td>
<td>J</td>
<td>410</td>
<td>J</td>
<td>350000</td>
<td></td>
<td></td>
<td>1900</td>
<td>U</td>
<td>19000</td>
<td></td>
<td></td>
<td></td>
<td>52000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-61/70/74/76</td>
<td>8600</td>
<td>EB</td>
<td>7200</td>
<td>EB</td>
<td>810000</td>
<td>EB</td>
<td></td>
<td>130000</td>
<td>EB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-62</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
<td>U</td>
<td>830000</td>
<td></td>
<td></td>
<td>120000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-63</td>
<td>2800</td>
<td>U</td>
<td>1700</td>
<td>U</td>
<td>360000</td>
<td></td>
<td></td>
<td>120000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-64</td>
<td>160</td>
<td>J</td>
<td>160</td>
<td>J</td>
<td>160000</td>
<td></td>
<td></td>
<td>64000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-65</td>
<td>440</td>
<td>J</td>
<td>190</td>
<td>J</td>
<td>160000</td>
<td></td>
<td></td>
<td>21000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-66</td>
<td>600</td>
<td>J</td>
<td>310</td>
<td>J</td>
<td>220000</td>
<td></td>
<td></td>
<td>34000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-67</td>
<td>460</td>
<td>J</td>
<td>230</td>
<td>J</td>
<td>28000</td>
<td>U</td>
<td></td>
<td>5200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-77</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
<td>U</td>
<td>720000</td>
<td></td>
<td></td>
<td>140000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-78</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
<td>U</td>
<td>28000</td>
<td>U</td>
<td></td>
<td>1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-79</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
<td>U</td>
<td>310000</td>
<td></td>
<td></td>
<td>8700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-80</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
<td>U</td>
<td>28000</td>
<td>U</td>
<td></td>
<td>1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-81</td>
<td>1800</td>
<td>U</td>
<td>190</td>
<td>UM</td>
<td>9700</td>
<td>J</td>
<td></td>
<td>1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-82</td>
<td>3500</td>
<td></td>
<td>6600</td>
<td></td>
<td>260000</td>
<td></td>
<td></td>
<td>160000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-83</td>
<td>3000</td>
<td></td>
<td>3900</td>
<td></td>
<td>340000</td>
<td></td>
<td></td>
<td>86000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-84</td>
<td>12000</td>
<td>EB</td>
<td>17000</td>
<td>EB</td>
<td>90000</td>
<td>EB</td>
<td></td>
<td>350000</td>
<td>EB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-85/116/117</td>
<td>6800</td>
<td></td>
<td>9300</td>
<td></td>
<td>620000</td>
<td></td>
<td></td>
<td>210000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-86/87/97/109/119/125</td>
<td>25000</td>
<td></td>
<td>38000</td>
<td></td>
<td>130000</td>
<td></td>
<td></td>
<td>540000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-88/91</td>
<td>6800</td>
<td></td>
<td>7700</td>
<td></td>
<td>110000</td>
<td></td>
<td></td>
<td>220000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-89</td>
<td>450</td>
<td>J</td>
<td>550</td>
<td>J</td>
<td>61000</td>
<td></td>
<td></td>
<td>39000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-90/101/113</td>
<td>40000</td>
<td>EB</td>
<td>55000</td>
<td>EB</td>
<td>170000</td>
<td>EB</td>
<td></td>
<td>540000</td>
<td>EB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-92</td>
<td>10000</td>
<td></td>
<td>12000</td>
<td></td>
<td>890000</td>
<td></td>
<td></td>
<td>170000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-93/100</td>
<td>400</td>
<td>J</td>
<td>200</td>
<td>J</td>
<td>160000</td>
<td></td>
<td></td>
<td>220000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-94</td>
<td>390</td>
<td>J</td>
<td>200</td>
<td>J</td>
<td>120000</td>
<td></td>
<td></td>
<td>13000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-95</td>
<td>33000</td>
<td></td>
<td>51000</td>
<td></td>
<td>180000</td>
<td></td>
<td></td>
<td>650000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-96</td>
<td>260</td>
<td>J</td>
<td>1700</td>
<td>U</td>
<td>92000</td>
<td></td>
<td></td>
<td>210000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-98/102</td>
<td>1800</td>
<td>J</td>
<td>1500</td>
<td>J</td>
<td>330000</td>
<td></td>
<td></td>
<td>780000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-99</td>
<td>20000</td>
<td>EB</td>
<td>21000</td>
<td>EB</td>
<td>130000</td>
<td>EB</td>
<td></td>
<td>350000</td>
<td>EB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-103</td>
<td>510</td>
<td>J</td>
<td>360</td>
<td>J</td>
<td>85000</td>
<td></td>
<td></td>
<td>11000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-104</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
<td>U</td>
<td>5600</td>
<td>J</td>
<td></td>
<td>510</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-105</td>
<td>6400</td>
<td>EB</td>
<td>13000</td>
<td>EB</td>
<td>740000</td>
<td>EB</td>
<td></td>
<td>200000</td>
<td>EB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-106</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
<td>U</td>
<td>28000</td>
<td>U</td>
<td></td>
<td>1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-107</td>
<td>1800</td>
<td>U</td>
<td>1900</td>
<td>J</td>
<td>230000</td>
<td></td>
<td></td>
<td>41000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-108/124</td>
<td>3700</td>
<td>U</td>
<td>3400</td>
<td>U</td>
<td>5600</td>
<td></td>
<td></td>
<td>14000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-110/115</td>
<td>52000</td>
<td></td>
<td>71000</td>
<td></td>
<td>310000</td>
<td></td>
<td></td>
<td>1000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compounds</td>
<td>Result</td>
<td>Flag</td>
<td>CL#</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--------</td>
<td>------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>PCB-111</td>
<td>1800</td>
<td>U</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PCB-112</td>
<td>1800</td>
<td>U</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>260</td>
<td>J</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PCB-118</td>
<td>2800</td>
<td>U</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>150</td>
<td>J</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>1700</td>
<td>U</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>510</td>
<td>J</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>802</td>
<td>J</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>320</td>
<td>U</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>1700</td>
<td>U</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PCB-128/166</td>
<td>12000</td>
<td>U</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-129/138/163</td>
<td>7800</td>
<td>EB²</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>5200</td>
<td>EB²</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>1100</td>
<td>J</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-132</td>
<td>25000</td>
<td>EB²</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-133</td>
<td>930</td>
<td>J</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-134</td>
<td>4700</td>
<td>J</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-135/151</td>
<td>20000</td>
<td>J</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-136</td>
<td>800</td>
<td>EB²</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-137</td>
<td>3300</td>
<td>J</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-139/140</td>
<td>1200</td>
<td>J</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-141</td>
<td>12000</td>
<td>EB²</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-142</td>
<td>1700</td>
<td>U</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-143</td>
<td>270</td>
<td>J</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-144</td>
<td>2900</td>
<td>J</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-145</td>
<td>1700</td>
<td>U</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-146</td>
<td>9100</td>
<td>J</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-147/149</td>
<td>51000</td>
<td>J</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-150</td>
<td>510</td>
<td>J</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-152</td>
<td>59</td>
<td>J</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-153/168</td>
<td>53000</td>
<td>J</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-154</td>
<td>460</td>
<td>J</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-155</td>
<td>1700</td>
<td>U</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-156/157</td>
<td>7700</td>
<td>J</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-158</td>
<td>7100</td>
<td>J</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-159</td>
<td>1700</td>
<td>U</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-160</td>
<td>1700</td>
<td>U</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-161</td>
<td>1700</td>
<td>U</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-162</td>
<td>1700</td>
<td>U</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-164</td>
<td>5400</td>
<td>J</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-165</td>
<td>1700</td>
<td>U</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-167</td>
<td>2800</td>
<td>J</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-169</td>
<td>260</td>
<td>EMPC</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PCB-170</td>
<td>6100</td>
<td>EB²</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>PCB-171/173</td>
<td>5800</td>
<td>J</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>PCB-172</td>
<td>3700</td>
<td>J</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Sample No.:</td>
<td>PA41S1</td>
<td>PA41S2</td>
<td>PA41S3</td>
<td>PA41S4</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Site: Lower Neponset River</td>
<td>SD-09</td>
<td>SD-10</td>
<td>SD-11</td>
<td>SD-12</td>
<td></td>
</tr>
<tr>
<td>Lab: Cape Fear Analytical</td>
<td>D35483</td>
<td>D35484</td>
<td>D35485</td>
<td>D35486</td>
<td></td>
</tr>
<tr>
<td>Case: 47773</td>
<td>Field Sample</td>
<td>Field Sample</td>
<td>Field Sample</td>
<td>Field Duplicate</td>
<td></td>
</tr>
<tr>
<td>SDG: PA41R3</td>
<td>Sediment</td>
<td>Sediment</td>
<td>Sediment</td>
<td>Sediment</td>
<td></td>
</tr>
<tr>
<td>Method: HRSM01.2</td>
<td>Analysis: 209 CB Congeners</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Location:</th>
<th>Sample Identifier:</th>
<th>Sample Type:</th>
<th>Matrix:</th>
<th>Dilution Factor:</th>
<th>% Solids:</th>
<th>Units:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D35483</td>
<td>Field Sample</td>
<td>Sediment</td>
<td>53.1</td>
<td>ng/kg (dry)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D35484</td>
<td>Field Sample</td>
<td>Sediment</td>
<td>55.0</td>
<td>ng/kg (dry)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D35485</td>
<td>Field Sample</td>
<td>Sediment</td>
<td>69.3</td>
<td>ng/kg (dry)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D35486</td>
<td>Field Duplicate</td>
<td>Sediment</td>
<td>51.9</td>
<td>ng/kg (dry)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CL#</th>
<th>Compounds</th>
<th>Result</th>
<th>Flag</th>
<th>EMPC/EDL/MD (L*)</th>
<th>Result</th>
<th>Flag</th>
<th>EMPC/EDL/MD (L*)</th>
<th>Result</th>
<th>Flag</th>
<th>EMPC/EDL/MD (L*)</th>
<th>Result</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>PCB-174</td>
<td>4700</td>
<td>EB^2</td>
<td>19000</td>
<td>EB^2</td>
<td>140000</td>
<td>EB^2</td>
<td>38000</td>
<td>EB^2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-175</td>
<td>220</td>
<td>J</td>
<td>680</td>
<td>J</td>
<td>7700</td>
<td>J</td>
<td>1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-176</td>
<td>600</td>
<td>J</td>
<td>2000</td>
<td>J</td>
<td>18000</td>
<td>J</td>
<td>5500</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-177</td>
<td>2900</td>
<td>J</td>
<td>11000</td>
<td>J</td>
<td>100000</td>
<td>J</td>
<td>27000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-178</td>
<td>860</td>
<td>J</td>
<td>3200</td>
<td>J</td>
<td>40000</td>
<td>J</td>
<td>9300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-179</td>
<td>1600</td>
<td>J</td>
<td>6000</td>
<td>J</td>
<td>67000</td>
<td>J</td>
<td>18000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-180/193</td>
<td>10000</td>
<td>J</td>
<td>47000</td>
<td>J</td>
<td>350000</td>
<td>J</td>
<td>90000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-181</td>
<td>150</td>
<td>J</td>
<td>150</td>
<td>J</td>
<td>2900</td>
<td>J</td>
<td>340</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-182</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
<td>U</td>
<td>2000</td>
<td>U</td>
<td>340</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-183/185</td>
<td>3200</td>
<td>J</td>
<td>12000</td>
<td>EB^2</td>
<td>97000</td>
<td>EB^2</td>
<td>26000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-184</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
<td>U</td>
<td>28000</td>
<td>U</td>
<td>1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-186</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
<td>U</td>
<td>28000</td>
<td>U</td>
<td>1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-187</td>
<td>4400</td>
<td>J</td>
<td>19000</td>
<td>J</td>
<td>200000</td>
<td>J</td>
<td>48000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-188</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
<td>U</td>
<td>28000</td>
<td>U</td>
<td>79</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-189</td>
<td>350</td>
<td>J</td>
<td>1100</td>
<td>J</td>
<td>11000</td>
<td>J</td>
<td>2300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-190</td>
<td>1800</td>
<td>U^1</td>
<td>4600</td>
<td>U^1</td>
<td>42000</td>
<td>U^1</td>
<td>8900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-191</td>
<td>1800</td>
<td>U^1</td>
<td>1700</td>
<td>U^1</td>
<td>28000</td>
<td>U^1</td>
<td>1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-192</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
<td>U</td>
<td>28000</td>
<td>U</td>
<td>1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-194</td>
<td>1800</td>
<td>U^1</td>
<td>14000</td>
<td>U^1</td>
<td>110000</td>
<td>U^1</td>
<td>30000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-195</td>
<td>1800</td>
<td>U^1</td>
<td>5200</td>
<td>U^1</td>
<td>41000</td>
<td>U^1</td>
<td>11000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-196</td>
<td>910</td>
<td>J</td>
<td>6200</td>
<td>J</td>
<td>47000</td>
<td>J</td>
<td>13000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-197/200</td>
<td>3700</td>
<td>U^1</td>
<td>3400</td>
<td>U^1</td>
<td>56000</td>
<td>U^1</td>
<td>3700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-198/199</td>
<td>2300</td>
<td>J</td>
<td>13000</td>
<td>EB^2</td>
<td>100000</td>
<td>EB^2</td>
<td>27000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-201</td>
<td>270</td>
<td>J</td>
<td>1200</td>
<td>J</td>
<td>11000</td>
<td>J</td>
<td>2900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-202</td>
<td>520</td>
<td>J</td>
<td>1900</td>
<td>J</td>
<td>20000</td>
<td>J</td>
<td>5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-203</td>
<td>1400</td>
<td>J</td>
<td>7300</td>
<td>J</td>
<td>59000</td>
<td>J</td>
<td>15000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-204</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
<td>U</td>
<td>28000</td>
<td>U</td>
<td>1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-205</td>
<td>1800</td>
<td>U</td>
<td>1700</td>
<td>U^1</td>
<td>28000</td>
<td>U^1</td>
<td>1900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PCB-206</td>
<td>1800</td>
<td>J</td>
<td>6800</td>
<td>EB^2</td>
<td>39000</td>
<td>EB^2</td>
<td>13000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PCB-207</td>
<td>230</td>
<td>J</td>
<td>730</td>
<td>J</td>
<td>4000</td>
<td>J</td>
<td>1300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PCB-208</td>
<td>690</td>
<td>J</td>
<td>2500</td>
<td>J</td>
<td>9700</td>
<td>J</td>
<td>4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>PCB-209</td>
<td>1800</td>
<td>U^1</td>
<td>6400</td>
<td>U^1</td>
<td>28000</td>
<td>U^1</td>
<td>6800</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2

ESAT GENERATED DATA SUMMARY TABLE - VALIDATED RESULTS

LOWER NEPONSET RIVER PCBS SITE

SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample Location</th>
<th>Sample Identifier</th>
<th>Sample Type</th>
<th>Matrix</th>
<th>Dilution Factor</th>
<th>% Solids</th>
<th>Units</th>
<th>Result</th>
<th>Flag</th>
<th>Result</th>
<th>Flag</th>
<th>Result</th>
<th>Flag</th>
<th>Result</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA41S1</td>
<td>SD-09</td>
<td>D35483</td>
<td>Field Sample</td>
<td>Sediment</td>
<td>53.1</td>
<td>1</td>
<td>ng/kg (dry)</td>
<td>48000</td>
<td>J</td>
<td>100</td>
<td>J</td>
<td>7200000</td>
<td>J</td>
<td>170000</td>
<td>J</td>
</tr>
<tr>
<td>PA41S2</td>
<td>SD-10</td>
<td>D35484</td>
<td>Field Sample</td>
<td>Sediment</td>
<td>55.0</td>
<td>I</td>
<td>ng/kg (dry)</td>
<td>190000</td>
<td>J</td>
<td>1100</td>
<td>J</td>
<td>7000000</td>
<td>J</td>
<td>420000</td>
<td>J</td>
</tr>
<tr>
<td>PA41S3</td>
<td>SD-11</td>
<td>D35485</td>
<td>Field Sample</td>
<td>Sediment</td>
<td>69.3</td>
<td>1</td>
<td>ng/kg (dry)</td>
<td>110000</td>
<td>J</td>
<td>830</td>
<td>J</td>
<td>1100000</td>
<td>J</td>
<td>180000</td>
<td>J</td>
</tr>
<tr>
<td>PA41S4</td>
<td>SD-12</td>
<td>D35486</td>
<td>Field Duplicate</td>
<td>Sediment</td>
<td>51.9</td>
<td>1</td>
<td>ng/kg (dry)</td>
<td>250000</td>
<td>J</td>
<td>34000</td>
<td>J</td>
<td>1700000</td>
<td>J</td>
<td>530000</td>
<td>J</td>
</tr>
</tbody>
</table>

Total MoCB

Total DiCB

Total TrCB

Total TeCB

Total PeCB

Total HxCB

Total HpCB

Total OcCB

Total NoCB

DeCB

Total PCBs

Total TEQ

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Result</th>
<th>Flag</th>
<th>Result</th>
<th>Flag</th>
<th>Result</th>
<th>Flag</th>
<th>Result</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total MoCB</td>
<td>48000</td>
<td>J</td>
<td>100</td>
<td>J</td>
<td>7200000</td>
<td>J</td>
<td>170000</td>
<td>J</td>
</tr>
<tr>
<td>Total DiCB</td>
<td>190000</td>
<td>J</td>
<td>1100</td>
<td>J</td>
<td>7000000</td>
<td>J</td>
<td>420000</td>
<td>J</td>
</tr>
<tr>
<td>Total TrCB</td>
<td>110000</td>
<td>J</td>
<td>830</td>
<td>J</td>
<td>1100000</td>
<td>J</td>
<td>180000</td>
<td>J</td>
</tr>
<tr>
<td>Total TeCB</td>
<td>81000</td>
<td>J</td>
<td>43000</td>
<td>J</td>
<td>7200000</td>
<td>J</td>
<td>170000</td>
<td>J</td>
</tr>
<tr>
<td>Total PeCB</td>
<td>250000</td>
<td>J</td>
<td>340000</td>
<td>J</td>
<td>1700000</td>
<td>J</td>
<td>530000</td>
<td>J</td>
</tr>
<tr>
<td>Total HxCB</td>
<td>210000</td>
<td>J</td>
<td>310000</td>
<td>J</td>
<td>3800000</td>
<td>J</td>
<td>950000</td>
<td>J</td>
</tr>
<tr>
<td>Total HpCB</td>
<td>38000</td>
<td>J</td>
<td>160000</td>
<td>J</td>
<td>1300000</td>
<td>J</td>
<td>340000</td>
<td>J</td>
</tr>
<tr>
<td>Total OcCB</td>
<td>5400</td>
<td>J</td>
<td>49000</td>
<td>J</td>
<td>3900000</td>
<td>J</td>
<td>100000</td>
<td>J</td>
</tr>
<tr>
<td>Total NoCB</td>
<td>2700</td>
<td>J</td>
<td>10000</td>
<td>J</td>
<td>530000</td>
<td>J</td>
<td>180000</td>
<td>J</td>
</tr>
<tr>
<td>DeCB</td>
<td>ND</td>
<td>ND</td>
<td>6400</td>
<td>ND</td>
<td>6800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total PCBs</td>
<td>930000</td>
<td>J</td>
<td>920000</td>
<td>J</td>
<td>2800000</td>
<td>J</td>
<td>4700000</td>
<td>J</td>
</tr>
<tr>
<td>Total TEQ</td>
<td>1.3</td>
<td>J</td>
<td>1.9</td>
<td>J</td>
<td>780</td>
<td>J</td>
<td>270</td>
<td></td>
</tr>
</tbody>
</table>

The WHO Toxic congeners are identified by the highlighted background.

* The values in this column are either the Estimated Detection Limits (EDL), Method Detection Limits (MDL), or the Estimated Maximum Possible Concentration (EMPC). The EMPC results are flagged as “EMPC” in the Result column and are qualified with a “J” since they are estimated values. EMPC results are not included in the Total Homologues.

The Toxic Equivalent concentrations are calculated with the Toxicity Equivalency Factors (TEFs) found in "The 2005 World Health Organization Re-evaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds, Society of Toxicology, July 7, 2006." The TE values are calculated using the final validated data and include the positive results and estimated values. The TE values are estimated (J) when any individual congener is estimated. The TE calculations do not include RL values.

^ Total PCBs are the sum of the total homologues.

TIER 2/S4VEM DATA VALIDATION QUALIFIER COMMENTS:

J Sample concentrations reported below the laboratory reporting limit are flagged (J) on the Data Summary Table as estimated values with no superscripts.

1 Blank contamination; the positive sample results that are less than the CRQL are reported as non-detects (U) at the CRQL; positive sample sample results greater than the CRQL but less than the blank result are reported as non-detect (U) at the adjusted blank concentration.

2 Equipment blank contamination; detects for the affected compounds are flagged (EB) on the Data Summary Table to indicate the presence of an unknown amount of sampling error as evidenced by the aqueous equipment blank contamination.

3 LCS/LCSD recovery above QC limits; estimate high (J+) all positive results for PCB 1 and PCB 4 in all sediment samples.

4 Congener exceeded the instrument calibration range; estimate (J) the affected analytes in samples PA41R8 and PA41R9.

5 Labeled compound ion abundance ratio criteria not met; estimate (J) positive results for PCB 1 and PCB 2 in sample PA41R9.

6 Field duplicate precision outside criteria; estimate (J, UJ) the positive results and non-detects for PCB 1 in all sediment samples.
TABLE 2

ESAT GENERATED DATA SUMMARY TABLE - VALIDATED RESULTS

LOWER NEPONSET RIVER PCBS SITE

SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Sample Location</th>
<th>Sample Identifier</th>
<th>Sample Type</th>
<th>Matrix</th>
<th>Dilution Factor</th>
<th>% Solids</th>
<th>Units</th>
<th>Compounds</th>
<th>Result</th>
<th>EMPC/EDL/MD</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
<td>Water</td>
<td>PCB-1</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-2</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
<td>Water</td>
<td>PCB-3</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-4</td>
<td>14</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
<td>Water</td>
<td>PCB-5</td>
<td>19</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-6</td>
<td>19</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
<td>Water</td>
<td>PCB-7</td>
<td>19</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-8</td>
<td>11</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-9</td>
<td>19</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-10</td>
<td>19</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-11</td>
<td>42</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-12/13</td>
<td>39</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-14</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-15</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-16</td>
<td>2.6</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-17</td>
<td>3.6</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-18/30</td>
<td>39</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-19</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
<td>Water</td>
<td>PCB-20/28</td>
<td>39</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
<td>Water</td>
<td>PCB-21/33</td>
<td>4.4</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-22</td>
<td>2.8</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-23</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-24</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-25</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-26/29</td>
<td>2.0</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-27</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
<td>Water</td>
<td>PCB-31</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
<td></td>
<td>Water</td>
<td>PCB-32</td>
<td>2.4</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-33</td>
<td>4.4</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-34</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-35</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-36</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-37</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-38</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-39</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-40/71</td>
<td>2.9</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-41</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-42</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-43</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-44/47/65</td>
<td>59</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-45/51</td>
<td>39</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-46</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-48</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-49/69</td>
<td>39</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-50/53</td>
<td>1.6</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>PCB-52</td>
<td>20</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Sample No.</td>
<td>Compounds</td>
<td>Result</td>
<td>Flag</td>
<td>EMPC/EDL/MD L*</td>
<td>Result</td>
<td>Flag</td>
<td>EMPC/EDL/MD L*</td>
<td>Result</td>
<td>Flag</td>
<td>EMPC/EDL/MD L*</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>--------</td>
<td>------</td>
<td>----------------</td>
<td>--------</td>
<td>------</td>
<td>----------------</td>
<td>--------</td>
<td>------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-54</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-55</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-56</td>
<td>2.2</td>
<td>J</td>
<td>3.4</td>
<td>J</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-57</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-58</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-59/62/75</td>
<td>59</td>
<td>U</td>
<td>58</td>
<td>U</td>
<td>60</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-60</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-61/70/74/76</td>
<td>78</td>
<td>U</td>
<td>12</td>
<td>J</td>
<td>80</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-63</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-64</td>
<td>3.6</td>
<td>J</td>
<td>5.7</td>
<td>J</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-66</td>
<td>3.5</td>
<td>J</td>
<td>7.3</td>
<td>J</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-67</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-68</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-72</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-73</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-77</td>
<td>UM</td>
<td>3.5</td>
<td>UM</td>
<td>3.5</td>
<td>UM</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-78</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-79</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-80</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PCB-81</td>
<td>UM</td>
<td>2.6</td>
<td>UM</td>
<td>2.5</td>
<td>UM</td>
<td>2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-82</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-83</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-84</td>
<td>20</td>
<td>U</td>
<td>2.4</td>
<td>J</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-85/116/117</td>
<td>59</td>
<td>U</td>
<td>58</td>
<td>U</td>
<td>60</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-86/87/97/109/119/125</td>
<td>120</td>
<td>U</td>
<td>120</td>
<td>U</td>
<td>120</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-88/91</td>
<td>39</td>
<td>U</td>
<td>38</td>
<td>U</td>
<td>40</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-89</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-90/101/113</td>
<td>5.6</td>
<td>J</td>
<td>6.6</td>
<td>J</td>
<td>3.9</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-92</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-93/100</td>
<td>39</td>
<td>U</td>
<td>38</td>
<td>U</td>
<td>40</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-94</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-95</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-96</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-98/102</td>
<td>39</td>
<td>U</td>
<td>38</td>
<td>U</td>
<td>40</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-99</td>
<td>2.4</td>
<td>J</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-103</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-104</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-105</td>
<td>UM</td>
<td>2.3</td>
<td>3.6</td>
<td>J</td>
<td>UM</td>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-106</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-107</td>
<td>20</td>
<td>U</td>
<td>19</td>
<td>U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-108/124</td>
<td>39</td>
<td>U</td>
<td>38</td>
<td>U</td>
<td>40</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PCB-110/115</td>
<td>39</td>
<td>U</td>
<td>38</td>
<td>U</td>
<td>40</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2
ESAT GENERATED DATA SUMMARY TABLE - VALIDATED RESULTS
LOWER NEPONSET RIVER PCBS SITE
SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Sample No.:</th>
<th>Sample Location:</th>
<th>Sample Identifier:</th>
<th>Sample Type:</th>
<th>Matrix:</th>
<th>Dilution Factor:</th>
<th>% Solids:</th>
<th>Units:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Result</th>
<th>Flag</th>
<th>EMPC/EDL/MD L*</th>
<th>Result</th>
<th>Flag</th>
<th>EMPC/EDL/MD L*</th>
<th>Result</th>
<th>Flag</th>
<th>EMPC/EDL/MD L*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-111</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-114</td>
<td>UM</td>
<td>U</td>
<td>19 U</td>
<td>UM</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-118</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>UM</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-120</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-121</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-122</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-123</td>
<td>UM</td>
<td>U</td>
<td>19 U</td>
<td>UM</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-126</td>
<td>UM</td>
<td>U</td>
<td>19 U</td>
<td>UM</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-127</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-128/166</td>
<td>39 U</td>
<td>U</td>
<td>38 U</td>
<td>40 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-129/138/163</td>
<td>5.9 J</td>
<td>8.2 J</td>
<td>3.9 J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-130</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-131</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-132</td>
<td>2.6 J</td>
<td>J</td>
<td>1.9 J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-133</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-134</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-135/151</td>
<td>39 U</td>
<td>U</td>
<td>38 U</td>
<td>40 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-136</td>
<td>20 U</td>
<td>U</td>
<td>1.4 J</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-137</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-139/140</td>
<td>39 U</td>
<td>U</td>
<td>38 U</td>
<td>40 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-141</td>
<td>20 U</td>
<td>U</td>
<td>2.0 J</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-142</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-143</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-144</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-145</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-146</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-147/149</td>
<td>39 U</td>
<td>U</td>
<td>38 U</td>
<td>40 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-148</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-150</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-152</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-153/168</td>
<td>39 U</td>
<td>U</td>
<td>38 U</td>
<td>40 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-154</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-155</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-156/157</td>
<td>UM</td>
<td>U</td>
<td>3.7</td>
<td>UM</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-158</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-159</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-160</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-161</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-162</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-164</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-165</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-167</td>
<td>UM</td>
<td>U</td>
<td>2.2</td>
<td>UM</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-169</td>
<td>UM</td>
<td>U</td>
<td>1.9</td>
<td>UM</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-170</td>
<td>2.0 J</td>
<td>J</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-171/173</td>
<td>39 U</td>
<td>U</td>
<td>38 U</td>
<td>40 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-172</td>
<td>20 U</td>
<td>U</td>
<td>19 U</td>
<td>20 U</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>Compounds</td>
<td>Result</td>
<td>Flag</td>
<td>EMPC/EDL/MD</td>
<td>Result</td>
<td>Flag</td>
<td>EMPC/EDL/MD</td>
<td>Result</td>
<td>Flag</td>
</tr>
<tr>
<td>----</td>
<td>---------------</td>
<td>--------</td>
<td>------</td>
<td>-------------</td>
<td>--------</td>
<td>------</td>
<td>-------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>7</td>
<td>PCB-174</td>
<td>20</td>
<td>U</td>
<td>2.6 J</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-175</td>
<td>20</td>
<td>U</td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-176</td>
<td>20</td>
<td>U</td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-177</td>
<td>20</td>
<td>U</td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-178</td>
<td>20</td>
<td>U</td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-179</td>
<td>20 U1</td>
<td></td>
<td>19 U1</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-180/193</td>
<td>39 U1</td>
<td></td>
<td>38 U1</td>
<td>40</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-181</td>
<td>20</td>
<td>U</td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-182</td>
<td>20</td>
<td>U</td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-183/185</td>
<td>2.1 J</td>
<td></td>
<td>1.7 J</td>
<td>40</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-184</td>
<td>20</td>
<td>U</td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-186</td>
<td>20</td>
<td>U</td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-187</td>
<td>20 U1</td>
<td></td>
<td>19 U1</td>
<td>20 U1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-188</td>
<td>20</td>
<td>U</td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-189</td>
<td>UM 2.7</td>
<td></td>
<td>UM 2.6</td>
<td>UM 2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-190</td>
<td>20</td>
<td>U</td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-191</td>
<td>20</td>
<td>U</td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PCB-192</td>
<td>20</td>
<td>U</td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-194</td>
<td>20 U1</td>
<td></td>
<td>19 U1</td>
<td>20 U1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-195</td>
<td>20</td>
<td>U</td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-196</td>
<td>20</td>
<td>U</td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-197/200</td>
<td>39 U</td>
<td></td>
<td>38 U</td>
<td>40</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-198/199</td>
<td>39 U</td>
<td></td>
<td>1.9 J</td>
<td>40</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-201</td>
<td>20</td>
<td>U</td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-202</td>
<td>20</td>
<td>U</td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-203</td>
<td>20</td>
<td>U</td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-204</td>
<td>20</td>
<td>U</td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PCB-205</td>
<td>20</td>
<td>U</td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PCB-206</td>
<td>1.4 J</td>
<td></td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PCB-207</td>
<td>20</td>
<td>U</td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PCB-208</td>
<td>20</td>
<td>U</td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>PCB-209</td>
<td>0.53 J</td>
<td></td>
<td>19 U</td>
<td>20</td>
<td>U</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2
ESAT GENERATED DATA SUMMARY TABLE - VALIDATED RESULTS
LOWER NEPONSET RIVER PCBS SITE
SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Sample No.:</th>
<th>Sample Location:</th>
<th>Matrix:</th>
<th>% Solids:</th>
<th>Units:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA41S5</td>
<td>Rinsate Blank</td>
<td>Water</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>PA41S6</td>
<td>Rinsate Blank</td>
<td>Water</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>PA41S7</td>
<td>Rinsate Blank</td>
<td>Water</td>
<td>1</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Result</th>
<th>Flag</th>
<th>EMPC/EDL/MD L*</th>
<th>Result</th>
<th>Flag</th>
<th>EMPC/EDL/MD L*</th>
<th>Result</th>
<th>Flag</th>
<th>EMPC/EDL/MD L*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total MoCB</td>
<td>ND</td>
<td></td>
<td>ND</td>
<td>ND</td>
<td></td>
<td>ND</td>
<td>ND</td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td>Total DiCB</td>
<td>52</td>
<td>J</td>
<td>75</td>
<td>J</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td>Total TrCB</td>
<td>18</td>
<td>J</td>
<td>14</td>
<td>J</td>
<td>12</td>
<td>J</td>
<td>ND</td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td>Total TeCB</td>
<td>14</td>
<td>J</td>
<td>36</td>
<td>J</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td>Total PeCB</td>
<td>8.0</td>
<td>J</td>
<td>13</td>
<td>J</td>
<td>3.9</td>
<td>J</td>
<td>ND</td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td>Total HxCB</td>
<td>8.5</td>
<td>J</td>
<td>12</td>
<td>J</td>
<td>5.8</td>
<td>J</td>
<td>ND</td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td>Total HpCB</td>
<td>4.1</td>
<td>J</td>
<td>4.3</td>
<td>J</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td>Total OcCB</td>
<td>ND</td>
<td></td>
<td>1.9</td>
<td>J</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td>Total NoCB</td>
<td>1.4</td>
<td>J</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td>ND</td>
<td>ND</td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td>DeCB</td>
<td>0.53</td>
<td>J</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td>ND</td>
<td>ND</td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td>Total PCBs^</td>
<td>110</td>
<td>J</td>
<td>160</td>
<td>J</td>
<td>22</td>
<td>J</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Total TEQ#</td>
<td>0</td>
<td></td>
<td>0.00011</td>
<td>J</td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

The WHO Toxic congeners are identified by the highlighted background.

* The values in this column are either the Estimated Detection Limits (EDL), Method Detection Limits (MDL), or the Estimated Maximum Possible Concentration (EMPC). The EMPC results are flagged as "EMPC" in the Result column and are qualified with a "J" since they are estimated values. EMPC results are not included in the Total Homologues.

The Toxic Equivalent concentrations are calculated with the Toxicity Equivalency Factors (TEFs) found in "The 2005 World Health Organization Re-evaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds, Society of Toxicology, July 7, 2006. The TE values are calculated using the final validated data and include the positive results and estimated values. The TE values are estimated (J) when any individual congener is estimated. The TE calculations do not include RL values.

^ Total PCBs are the sum of the total homologues.

TIER 2/S4VEM DATA VALIDATION QUALIFIER COMMENTS:

1. Blank contamination; the positive sample results that are less than the CRQL are reported as non-detects (U) at the CRQL; positive sample results greater than the CRQL but less than the blank result are reported as non-detect (U) at the adjusted blank concentration.

2. Equipment blank contamination; detects for the affected compounds are flagged (EB) on the Data Summary Table to indicate the presence of an unknown amount of sampling error as evidenced by the aqueous equipment blank contamination.

3. LCS/LCSD recovery above QC limits; estimate high (J+) all positive results for PCB 1 and PCB 4 in all sediment samples.

4. Congener exceeded the instrument calibration range; estimate (J) the affected analytes in samples PA41R8 and PA41R9.

5. Labeled compound ion abundance ratio criteria not met; estimate (J) positive results for PCB 1 and PCB 2 in sample PA41R9.

6. Field duplicate precision outside criteria; estimate (J, UJ) the positive results and non-detects for PCB 1 in all sediment samples.
SITE: LOWER NEPONSET RIVER PCBs

CASE: 47773 SDG: PA41R3
LABORATORY: CAPE FEAR ANALYTICAL

DATA SUMMARY TABLE 3
TOTAL PCB CONGENER AND WHO TOXIC PCB HOMOLOGUES
SEDIMENT ANALYSIS
SEPTEMBER 2018

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>CRQL</th>
<th>PA41R3</th>
<th>PA41R4</th>
<th>PA41R5</th>
<th>PA41R6</th>
<th>PA41R7</th>
<th>PA41R8</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB-77</td>
<td>0.002</td>
<td>37 U</td>
<td>1.1 U</td>
<td>160 J</td>
<td>140 J</td>
<td>100 J</td>
<td>540 J</td>
</tr>
<tr>
<td>PCB-81</td>
<td>0.002</td>
<td>4 U</td>
<td>0.13 U</td>
<td>5.1 J</td>
<td>2.1 J</td>
<td>7.5 U</td>
<td>17 J</td>
</tr>
<tr>
<td>PCB-105</td>
<td>0.002</td>
<td>97 EB</td>
<td>0.21 J EB</td>
<td>250 EB</td>
<td>200 EB</td>
<td>38 EB</td>
<td>770 EB</td>
</tr>
<tr>
<td>PCB-114</td>
<td>0.002</td>
<td>7.4 J</td>
<td>0.13 UM</td>
<td>22 J</td>
<td>16 J</td>
<td>8 J</td>
<td>89 J</td>
</tr>
<tr>
<td>PCB-118</td>
<td>0.002</td>
<td>500 J</td>
<td>1.1 U</td>
<td>510 J</td>
<td>540 J</td>
<td>640 J</td>
<td>3100 J</td>
</tr>
<tr>
<td>PCB-123</td>
<td>0.002</td>
<td>6.7 UM</td>
<td>0.2 UM</td>
<td>12 J</td>
<td>9.3 J</td>
<td>8.1 UM</td>
<td>38 J</td>
</tr>
<tr>
<td>PCB-126</td>
<td>0.002</td>
<td>6.4 UM</td>
<td>0.19 UM</td>
<td>2.8 J</td>
<td>2.3 J</td>
<td>8.6 U</td>
<td>11 J</td>
</tr>
<tr>
<td>PCB-156/157</td>
<td>0.002</td>
<td>78 J</td>
<td>2.2 U</td>
<td>37 J</td>
<td>26 J</td>
<td>91 U</td>
<td>330 J</td>
</tr>
<tr>
<td>PCB-167</td>
<td>0.002</td>
<td>25 J</td>
<td>0.12 UM</td>
<td>11 J</td>
<td>8 J</td>
<td>20 J</td>
<td>96 J</td>
</tr>
<tr>
<td>PCB-189</td>
<td>0.002</td>
<td>5.3 UM</td>
<td>0.16 UM</td>
<td>0.22 UM</td>
<td>0.26 UM</td>
<td>6.4 UM</td>
<td>5.1 UM</td>
</tr>
<tr>
<td>PCB-198</td>
<td>0.002</td>
<td>8.4 J</td>
<td>0.11 UM</td>
<td>2.3 J</td>
<td>2.2 J</td>
<td>12 J</td>
<td>32 J</td>
</tr>
</tbody>
</table>

Total MoCB
- NA
- ND
- 59 J
- 94 J
- 41000 J
- 56000 J

Total DicB
- NA
- 20000 J
- 65 J
- 1500 J
- 3900 J
- 110000 J
- 470000 J

Total TrcB
- NA
- 23000 J
- 68 J
- 11000 J
- 18000 J
- 69000 J
- 360000 J

Total TeCB
- NA
- 14000 J
- 1.87 J
- 15000 J
- 17000 J
- 36000 J
- 150000 J

Total PcCB
- NA
- 4900 J
- 0.56 J
- 4600 J
- 5200 J
- 12000 J
- 35000 J

Total HeCB
- NA
- 3100 J
- 0.49 J
- 1000 J
- 990 J
- 4200 J
- 9800 J

Total HpCB
- NA
- 910 J
- 0.35 J
- 300 J
- 320 J
- 1700 J
- 3800 J

Total OcCB
- NA
- 360 J
- ND
- 90 J
- 100 J
- 680 J
- 1200 J

Total NoCB
- NA
- 50 J
- ND
- 17 J
- 18 J
- 120 J
- 180 J

DScB
- NA
- ND
- ND
- 4.9 J
- 6.6 J
- ND
- ND

Total PCB's
- NA
- 70.000
- 4.6
- 33.000
- 46.000
- 270.000
- 1,100.000

S4VEM DATA VALIDATION

QUALIFIER COMMENTS:

- Total PCBs are the sum of the total homologues.
- Tier 2/S4VEM DATA VALIDATION QUALIFIER COMMENTS:
 - J Sample concentrations reported below the laboratory reporting limit are flagged (J) on the Data Summary Table as estimated values with no superscripts.
 - 1 Blank contamination; the positive sample results that are less than the CRQL are reported as non-detects (U) at the CRQL; positive sample results are reported as non-detects (U) at the adjusted blank concentration.
 - 2 Equipment blank contamination; detects for the affected compounds are flagged (EB) on the Data Summary Table to indicate the presence of an unknown amount of sampling error as evidenced by the aqueous equipment blank contamination.
 - 3 LCS/LCSD recovery above QC limits; estimate high (J+) all positive results for PCB 1 and PCB 4 in all sediment samples.
 - 4 Tier 2/S4VEM; the affected analytes in samples PA41R8 and PA41R9.
 - 5 Labeled compound ion abundance ratio criteria not met; estimate (J) positive results for PCB 1 and PCB 2 in sample PA41R8.
 - 6 Field duplicate precision outside criteria; estimate (J) the positive results and non-detects for PCB 1 in all sediment samples.

- CRQL = Contract Required Quantitation Limit
- All results are reported on a Dry Weight Basis.
- * Reported value is from diluted analysis.
- WHO = World Health Organization.
- WHO = World Health Organization.
- **COMPOUND = WHO Toxic PCB Homologues**

NOTES:

- Results are reported in micrograms per kilogram (μg/kg).

S:/TD1_16060009/Reports/Final SI Report/Attachments/E 2018 Analytical Results/Table 3_PA41R3_Total PCBs.xlsx
DATA SUMMARY TABLE 3
TOTAL PCB CONGENER AND WHO TOXIC PCB HOMOLOGUES
SEDIMENT ANALYSIS
SEPTEMBER 2018

<table>
<thead>
<tr>
<th>CLP SAMPLE NUMBER</th>
<th>PA41S0</th>
<th>PA41S1</th>
<th>PA41S2</th>
<th>PA41S3</th>
<th>PA41S4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE IDENTIFIER</td>
<td>D35481</td>
<td>D35482</td>
<td>D35483</td>
<td>D35484</td>
<td>D35485</td>
</tr>
<tr>
<td>STATION LOCATION</td>
<td>SD-07</td>
<td>SD-08</td>
<td>SD-09</td>
<td>SD-10</td>
<td>SD-11</td>
</tr>
<tr>
<td>SAMPLE LOCATION</td>
<td>THD-C1 F</td>
<td>UNR-C2 D</td>
<td>UNR-C3 A</td>
<td>UMB-C2 C</td>
<td>LCA-C3 D</td>
</tr>
<tr>
<td>LABORATORY NUMBER</td>
<td>13887007</td>
<td>13887008</td>
<td>13887009</td>
<td>13887010</td>
<td>13887011</td>
</tr>
</tbody>
</table>

DATA SUMMARY TABLE 3

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>PCP-77</th>
<th>PCP-81</th>
<th>PCP-105</th>
<th>PCP-114</th>
<th>PCP-118</th>
<th>PCP-123</th>
<th>PCP-126</th>
<th>PCP-156/157</th>
<th>PCP-167</th>
<th>PCP-169</th>
<th>PCP-189</th>
<th>Total MoCB</th>
<th>Total DiCB</th>
<th>Total TrCB</th>
<th>Total PeCB</th>
<th>Total HxCB</th>
<th>Total HpCB</th>
<th>Total OcCB</th>
<th>Total NoCB</th>
<th>Total PCB's</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRQL</td>
<td>0.002</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>% SOLID</td>
<td>38.7</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:

1. Sample concentrations reported below the laboratory reporting limit are flagged (J) on the Data Summary Table as estimated values with no superscripts.
2. Equipment blank contamination; detects for the affected compounds are flagged (EB) on the Data Summary Table to indicate the presence of an unknown amount of sampling error as evidenced by the aqueous equipment blank contamination.
3. Labeled compound ion abundance ratio criteria not met; estimate (J) positive results for PCB 1 and PCB 2 in sample PA41R9.
4. Field duplicate precision outside criteria; estimate (J, UJ) the positive results and non-detects for PCB 1 in all sediment samples.

QUALIFIER COMMENTS:

- **J** Sample concentrations reported below the laboratory reporting limit are flagged (J) on the Data Summary Table as estimated values with no superscripts.
- **1** Blank contamination; the positive sample results that are less than the CRQL are reported as non-detects (U) at the CRQL; positive sample results greater than the BLQ but less than the blank result are reported as non-detect (U) at the adjusted blank concentration.
- **2** Equipment blank contamination; detects for the affected compounds are flagged (EB) on the Data Summary Table to indicate the presence of an unknown amount of sampling error as evidenced by the aqueous equipment blank contamination.
- **3** LCS/LCSD recovery above QC limits; estimate high (J+) all positive results for PCB 1 and PCB 4 in all sediment samples.
- **4** Congener exceeded the instrument calibration range; estimate (J) the affected analytes in samples PA41R8 and PA41R9.
- **5** Labeled compound ion abundance ratio criteria not met; estimate (J) positive results for PCB 1 and PCB 4 in sample PA41R9.
- **6** Field duplicate precision outside criteria; estimate (J, UJ) the positive results and non-detects for PCB 1 in all sediment samples.
TABLE 4

SUMMARY OF POLYCHLORINATED BIPHENYL RESULTS
SEDIMENT/SOURCE SAMPLES
LOWER NEPONSET RIVER PCBS SITE
SEPTEMBER 2018

<table>
<thead>
<tr>
<th>SAMPLE LOCATION</th>
<th>THD-C102 C</th>
<th>WBD-C1 C</th>
<th>WBD-C5 C</th>
<th>BCA-C3 C</th>
<th>BCA-C4 B</th>
<th>Lab RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE NUMBER</td>
<td>0134LN-0104</td>
<td>0134LN-0003</td>
<td>0134LN-0013</td>
<td>0134LN-0024</td>
<td>0134LN-0029</td>
<td>0134LN-00029</td>
</tr>
<tr>
<td>LAB SAMPLE ID</td>
<td>AB76569</td>
<td>AB76570</td>
<td>AB76571</td>
<td>AB76572</td>
<td>AB76573</td>
<td>AB76573</td>
</tr>
<tr>
<td>COMPOUND</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aroclor-1016</td>
<td>ND</td>
<td>14,000</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>4,500</td>
</tr>
<tr>
<td>Aroclor-1221</td>
<td>170,000</td>
<td>14,000</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>4,500</td>
</tr>
<tr>
<td>Aroclor-1232</td>
<td>ND</td>
<td>14,000</td>
<td>ND</td>
<td>34,000</td>
<td>ND</td>
<td>4,500</td>
</tr>
<tr>
<td>Aroclor-1242</td>
<td>ND</td>
<td>14,000</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>4,500</td>
</tr>
<tr>
<td>Aroclor-1248</td>
<td>ND</td>
<td>14,000</td>
<td>9,800</td>
<td>ND</td>
<td>15,000</td>
<td>21,000</td>
</tr>
<tr>
<td>Aroclor-1254</td>
<td>ND</td>
<td>14,000</td>
<td>ND</td>
<td>8,300</td>
<td>ND</td>
<td>4,500</td>
</tr>
<tr>
<td>Aroclor-1260</td>
<td>ND</td>
<td>14,000</td>
<td>ND</td>
<td>3,900</td>
<td>ND</td>
<td>4,500</td>
</tr>
<tr>
<td>Aroclor-1262</td>
<td>ND</td>
<td>14,000</td>
<td>ND</td>
<td>3,900</td>
<td>ND</td>
<td>4,500</td>
</tr>
<tr>
<td>Aroclor-1268</td>
<td>ND</td>
<td>14,000</td>
<td>ND</td>
<td>3,900</td>
<td>ND</td>
<td>4,500</td>
</tr>
</tbody>
</table>

NOTES:

All Results in micrograms per Kilogram (µg/Kg). (Note: results reported in milligrams per Kilograms (mg/Kg) and have been converted.)
Bolded results exceed laboratory Reporting Limits (RLs).
ND = Not Detected above Laboratory Reporting Limits (RLs).
P = The confirmation value exceeded 35% difference and is less than 100%. The lower value is reported.
TABLE 4

SUMMARY OF POLYCHLORINATED BIPHENYL RESULTS

SEDIMENT/SOURCE SAMPLES

LOWER NEPONSET RIVER PCBS SITE

SEPTEMBER 2018

<table>
<thead>
<tr>
<th>SAMPLE LOCATION</th>
<th>BCA-C5 D</th>
<th>BCA-C6 G</th>
<th>BCA-C7 A</th>
<th>THD-C1 B</th>
<th>THD-C1 D</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE NUMBER</td>
<td>0134LN-0036</td>
<td>0134LN-0044</td>
<td>0134LN-0047</td>
<td>0134LN-0051</td>
<td>0134LN-0053</td>
</tr>
<tr>
<td>LAB SAMPLE ID</td>
<td>AB76574</td>
<td>AB76575</td>
<td>AB76576</td>
<td>AB76577</td>
<td>AB76578</td>
</tr>
<tr>
<td>COMPOUND</td>
<td>Aroclor-1016</td>
<td>Aroclor-1221</td>
<td>Aroclor-1232</td>
<td>Aroclor-1242</td>
<td>Aroclor-1248</td>
</tr>
<tr>
<td>Lab</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>12,000 P</td>
</tr>
<tr>
<td>RL</td>
<td>4,800</td>
<td>4,800</td>
<td>4,800</td>
<td>4,800</td>
<td>4,800</td>
</tr>
<tr>
<td>Lab</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2,600</td>
</tr>
<tr>
<td>RL</td>
<td>590</td>
<td>590</td>
<td>590</td>
<td>590</td>
<td>590</td>
</tr>
<tr>
<td>Lab</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2,700</td>
</tr>
<tr>
<td>RL</td>
<td>2,700</td>
<td>2,700</td>
<td>2,700</td>
<td>2,700</td>
<td>2,700</td>
</tr>
<tr>
<td>Lab</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>13,000</td>
</tr>
<tr>
<td>RL</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

NOTES:

All Results in micrograms per Kilogram (µg/Kg). (Note: Results reported by Laboratory in milligrams per Kilograms (mg/Kg) and have been converted to µg/Kg.)

Bolded results exceed laboratory Reporting Limits (RLs).

ND = Not Detected above Laboratory Reporting Limits (RLs).

P = The confirmation value exceeded 35% difference and is less than 100%. The lower value is reported.
TABLE 4

SUMMARY OF POLYCHLORINATED BIPHENYL RESULTS

SEDIMENT/SOURCE SAMPLES

LOWER NEPONSET RIVER PCBS SITE

SEPTEMBER 2018

<table>
<thead>
<tr>
<th>SAMPLE LOCATION</th>
<th>THD-C1 F</th>
<th>Lab</th>
<th>THD-C2 C</th>
<th>Lab</th>
<th>LCA-C2 A</th>
<th>Lab</th>
<th>LCA-C2 C</th>
<th>Lab</th>
<th>LCA-C2 E</th>
<th>Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE NUMBER</td>
<td>0134LN-0055</td>
<td>AB76579</td>
<td>0134LN-0060</td>
<td>AB76580</td>
<td>0134LN-0067</td>
<td>AB76581</td>
<td>0134LN-0069</td>
<td>AB76582</td>
<td>0134LN-0071</td>
<td>AB76583</td>
</tr>
<tr>
<td>LAB SAMPLE ID</td>
<td></td>
</tr>
<tr>
<td>COMPOUND</td>
<td></td>
</tr>
<tr>
<td>Aroclor-1016</td>
<td>ND</td>
<td>28,000</td>
<td>ND</td>
<td>11,000</td>
<td>ND</td>
<td>64,000</td>
<td>ND</td>
<td>200,000</td>
<td>ND</td>
<td>130,000</td>
</tr>
<tr>
<td>Aroclor-1221</td>
<td>360,000</td>
<td>28,000</td>
<td>140,000</td>
<td>11,000</td>
<td>670,000</td>
<td>64,000</td>
<td>1,600,000</td>
<td>200,000</td>
<td>880,000 P</td>
<td>130,000</td>
</tr>
<tr>
<td>Aroclor-1232</td>
<td>ND</td>
<td>28,000</td>
<td>ND</td>
<td>11,000</td>
<td>ND</td>
<td>64,000</td>
<td>ND</td>
<td>200,000</td>
<td>ND</td>
<td>130,000</td>
</tr>
<tr>
<td>Aroclor-1242</td>
<td>ND</td>
<td>28,000</td>
<td>ND</td>
<td>11,000</td>
<td>ND</td>
<td>64,000</td>
<td>ND</td>
<td>200,000</td>
<td>ND</td>
<td>130,000</td>
</tr>
<tr>
<td>Aroclor-1248</td>
<td>ND</td>
<td>28,000</td>
<td>ND</td>
<td>11,000</td>
<td>ND</td>
<td>64,000</td>
<td>ND</td>
<td>200,000</td>
<td>ND</td>
<td>130,000</td>
</tr>
<tr>
<td>Aroclor-1254</td>
<td>ND</td>
<td>28,000</td>
<td>ND</td>
<td>11,000</td>
<td>ND</td>
<td>64,000</td>
<td>ND</td>
<td>200,000</td>
<td>ND</td>
<td>130,000</td>
</tr>
<tr>
<td>Aroclor-1260</td>
<td>ND</td>
<td>28,000</td>
<td>ND</td>
<td>11,000</td>
<td>ND</td>
<td>64,000</td>
<td>ND</td>
<td>200,000</td>
<td>ND</td>
<td>130,000</td>
</tr>
<tr>
<td>Aroclor-1262</td>
<td>ND</td>
<td>28,000</td>
<td>ND</td>
<td>11,000</td>
<td>ND</td>
<td>64,000</td>
<td>ND</td>
<td>200,000</td>
<td>ND</td>
<td>130,000</td>
</tr>
<tr>
<td>Aroclor-1268</td>
<td>ND</td>
<td>28,000</td>
<td>ND</td>
<td>11,000</td>
<td>ND</td>
<td>64,000</td>
<td>ND</td>
<td>200,000</td>
<td>ND</td>
<td>130,000</td>
</tr>
</tbody>
</table>

NOTES:

All Results in micrograms per Kilogram (µg/Kg). (Note: Results reported by Laboratory in milligrams per Kilograms (mg/Kg) and have been converted to µg/Kg.)

Bolded results exceed laboratory Reporting Limits (RLs).

ND = Not Detected above Laboratory Reporting Limits (RLs).

P = The confirmation value exceeded 35% difference and is less than 100%. The lower value is reported.
TABLE 4

SUMMARY OF POLYCHLORINATED BIPHENYL RESULTS

SEDIMENT/SOURCE SAMPLES

LOWER NEPONSET RIVER PCBS SITE

SEPTEMBER 2018

<table>
<thead>
<tr>
<th>SAMPLE LOCATION</th>
<th>SAMPLE NUMBER</th>
<th>LAB SAMPLE ID</th>
<th>COMPOUND</th>
<th>Lab RL</th>
<th>MBC-C1 D</th>
<th>Lab RL</th>
<th>UMB-C1 A</th>
<th>Lab RL</th>
<th>UMB-C2 B</th>
<th>Lab RL</th>
<th>UNR-C2 D</th>
<th>Lab RL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0134LN-0074</td>
<td>AB76584</td>
<td>Aroclor-1016</td>
<td>ND</td>
<td>220,000</td>
<td>ND</td>
<td>3,300</td>
<td>ND</td>
<td>100</td>
<td>ND</td>
<td>110</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td>0134LN-0079</td>
<td>AB76585</td>
<td>Aroclor-1221</td>
<td>2,000,000</td>
<td>220,000</td>
<td>ND</td>
<td>3,300</td>
<td>ND</td>
<td>100</td>
<td>ND</td>
<td>110</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1232</td>
<td>ND</td>
<td>220,000</td>
<td>42,000</td>
<td>3,300</td>
<td>ND</td>
<td>100</td>
<td>ND</td>
<td>110</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1242</td>
<td>ND</td>
<td>220,000</td>
<td>ND</td>
<td>3,300</td>
<td>ND</td>
<td>100</td>
<td>ND</td>
<td>110</td>
<td>840</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1248</td>
<td>ND</td>
<td>220,000</td>
<td>ND</td>
<td>3,300</td>
<td>ND</td>
<td>100</td>
<td>ND</td>
<td>110</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1254</td>
<td>ND</td>
<td>220,000</td>
<td>ND</td>
<td>3,300</td>
<td>350</td>
<td>100</td>
<td>520</td>
<td>110</td>
<td>710</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1260</td>
<td>ND</td>
<td>220,000</td>
<td>ND</td>
<td>3,300</td>
<td>ND</td>
<td>100</td>
<td>540</td>
<td>110</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1262</td>
<td>ND</td>
<td>220,000</td>
<td>ND</td>
<td>3,300</td>
<td>ND</td>
<td>100</td>
<td>ND</td>
<td>110</td>
<td>ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aroclor-1268</td>
<td>ND</td>
<td>220,000</td>
<td>ND</td>
<td>3,300</td>
<td>ND</td>
<td>100</td>
<td>ND</td>
<td>110</td>
<td>ND</td>
</tr>
</tbody>
</table>

NOTES:

All Results in micrograms per Kilogram (µg/Kg). (Note: Results initially reported by Laboratory in milligrams per Kilograms (mg/Kg) and have been converted to µg/Kg.)

Bolded results exceed laboratory Reporting Limits (RLs).

ND = Not Detected above Laboratory Reporting Limits (RLs).

P = The confirmation value exceeded 35% difference and is less than 100%. The lower value is reported.
TABLE 4

SUMMARY OF POLYCHLORINATED BIPHENYL RESULTS
SEDIMENT/SOURCE SAMPLES
LOWER NEPONSET RIVER PCBS SITE
SEPTEMBER 2018

<table>
<thead>
<tr>
<th>SAMPLE LOCATION</th>
<th>UNR-C3 C</th>
<th>COMPOUND</th>
<th>Lab RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE NUMBER</td>
<td>0134LN-0102</td>
<td>Aroclor-1016</td>
<td>ND 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aroclor-1221</td>
<td>ND 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aroclor-1232</td>
<td>ND 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aroclor-1242</td>
<td>ND 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aroclor-1248</td>
<td>ND 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aroclor-1254</td>
<td>ND 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aroclor-1260</td>
<td>ND 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aroclor-1262</td>
<td>ND 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aroclor-1268</td>
<td>ND 60</td>
</tr>
</tbody>
</table>

NOTES:

Bolded results exceed laboratory Reporting Limits (RLs).
ND = Not Detected above Laboratory Reporting Limits (RLs).
P = The confirmation value exceeded 35% difference and is less than 100%. The lower

All Results in micrograms per Kilogram (µg/Kg). (Note: Results initially reported by Laboratory in milligrams per Kilograms (mg/Kg) and have been converted to µg/Kg.)
Bolded results exceed laboratory Reporting Limits (RLs).
ND = Not Detected above Laboratory Reporting Limits (RLs).
P = The confirmation value exceeded 35% difference and is less than 100%. The lower
DATA SUMMARY TABLE 5
TOTAL ORGANIC CARBON SEDIMENT ANALYSIS
SEPTEMBER 2018

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>STATION LOCATION</th>
<th>LABORATORY NUMBER</th>
<th>COMPOUND</th>
<th>MDL</th>
<th>RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>D35475</td>
<td>WBD-C5 C</td>
<td>180-81717-1</td>
<td>Total Organic Carbon (TOC)</td>
<td>750</td>
<td>1,000</td>
</tr>
<tr>
<td>D35476</td>
<td>PTB-C1 A</td>
<td>180-81717-2</td>
<td>26,000</td>
<td>J</td>
<td>2,100</td>
</tr>
<tr>
<td>D35477</td>
<td>BCA-C3 C</td>
<td>180-81717-3</td>
<td>31,000</td>
<td>J</td>
<td>45,000</td>
</tr>
<tr>
<td>D35478</td>
<td>BCA-C5 D</td>
<td>180-81717-4</td>
<td>66,000</td>
<td>J</td>
<td>61,000</td>
</tr>
<tr>
<td>D35479</td>
<td>THD-C1 G</td>
<td>180-81717-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D35480</td>
<td>LCA-C2 E</td>
<td>180-81717-6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DILUTION FACTOR</th>
<th>DATE SAMPLED</th>
<th>DATE ANALYZED</th>
<th>% SOLID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>9/4/2018</td>
<td>9/11/2018</td>
<td>57</td>
</tr>
<tr>
<td>1.0</td>
<td>9/4/2018</td>
<td>9/11/2018</td>
<td>88</td>
</tr>
<tr>
<td>1.0</td>
<td>9/4/2018</td>
<td>9/11/2018</td>
<td>61.6</td>
</tr>
<tr>
<td>1.0</td>
<td>9/5/2018</td>
<td>9/11/2018</td>
<td>52.8</td>
</tr>
<tr>
<td>1.0</td>
<td>9/5/2018</td>
<td>9/11/2018</td>
<td>44.2</td>
</tr>
<tr>
<td>1.0</td>
<td>9/5/2018</td>
<td>9/11/2018</td>
<td>53.1</td>
</tr>
</tbody>
</table>

S3VM DATA VALIDATION
QUALIFIER COMMENTS:
U = Value is non-detected.
J = Result is estimated due to exceedance of laboratory duplicate RPD criteria.

NOTES:
Results are reported in milligrams per kilogram (mg/kg).
MDL = Method Detection Limit.
RL = Reporting Limit Limit.
All results are reported on a Dry Weight Basis.
DATA SUMMARY TABLE 5
TOTAL ORGANIC CARBON SEDIMENT ANALYSIS
SEPTEMBER 2018

<table>
<thead>
<tr>
<th>SAMPLE NUMBER</th>
<th>STATION LOCATION</th>
<th>LABORATORY NUMBER</th>
<th>COMPOUND</th>
<th>MDL</th>
<th>RL</th>
</tr>
</thead>
<tbody>
<tr>
<td>D35481</td>
<td>THD-C1 F</td>
<td>180-81717-7</td>
<td>Total Organic Carbon (TOC)</td>
<td>750</td>
<td>1,000</td>
</tr>
<tr>
<td>D35482</td>
<td>UNR-C2 D</td>
<td>180-81717-8</td>
<td></td>
<td>61,000</td>
<td>J</td>
</tr>
<tr>
<td>D35483</td>
<td>UNR-C3 A</td>
<td>180-81717-9</td>
<td></td>
<td>100,000</td>
<td>J</td>
</tr>
<tr>
<td>D35484</td>
<td>UMB-C2 C</td>
<td>180-81717-10</td>
<td></td>
<td>77,000</td>
<td>J</td>
</tr>
<tr>
<td>D35485</td>
<td>LCA-C3 D</td>
<td>180-81717-11</td>
<td></td>
<td>55,000</td>
<td>J</td>
</tr>
<tr>
<td>D35486</td>
<td>BCA-C105 D</td>
<td>180-81717-12</td>
<td></td>
<td>19,000</td>
<td>J</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>47,000</td>
<td>J</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DILUTION FACTOR</th>
<th>DATE SAMPLED</th>
<th>DATE ANALYZED</th>
<th>% SOLID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>9/5/2018</td>
<td>9/11/2018</td>
<td>39.4</td>
</tr>
<tr>
<td>1.0</td>
<td>9/6/2018</td>
<td>9/11/2018</td>
<td>49.5</td>
</tr>
<tr>
<td>1.0</td>
<td>9/6/2018</td>
<td>9/11/2018</td>
<td>41</td>
</tr>
<tr>
<td>1.0</td>
<td>9/6/2018</td>
<td>9/11/2018</td>
<td>51.5</td>
</tr>
<tr>
<td>1.0</td>
<td>9/5/2018</td>
<td>9/11/2018</td>
<td>63.9</td>
</tr>
<tr>
<td>1.0</td>
<td>9/4/2018</td>
<td>9/11/2018</td>
<td>52.8</td>
</tr>
</tbody>
</table>

QUALIFIER COMMENTS:
- **U** = Value is non-detected.
- **J** = Result is estimated due to exceedance of laboratory duplicate RPD criteria.

NOTES:
- Results are reported in milligrams per kilogram (mg/kg).
- MDL = Method Detection Limit.
- RL = Reporting Limit Limit.
- All results are reported on a Dry Weight Basis.
ATTACHMENT F
LOWER NEPONSET RIVER PCBS
START ANALYTICAL SUMMARY TABLES
Samples Collected from 13 to 17 November 2017 and 4 to 6 September 2018

Table 1 Sediment/Source Sample PCB Aroclor Analytical Summary, Lower Neponset River PCBs Site, November 2017
Table 2 Sediment/Source Sample PCB Aroclor Analytical Summary, Lower Neponset River PCBs Site, September 2018
Table 3 Sediment/Source Sample Total PCBs (Congener) Analytical Summary, Lower Neponset River PCBs Site, September 2018
TABLE 1

SEDIMENT/SOURCE SAMPLE PCB AROCLOR ANALYTICAL SUMMARY
LOWER NEPONSET RIVER PCBS SITE
NOVEMBER 2017

<table>
<thead>
<tr>
<th>Sample Location</th>
<th>Compound</th>
<th>Sample Concentration</th>
<th>Background Concentration</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD-06</td>
<td>Aroclor-1248</td>
<td>2,100 *J2 μg/Kg</td>
<td>140 UJ μg/Kg</td>
<td>15 x SQL</td>
</tr>
<tr>
<td>SD-08A</td>
<td>Aroclor-1248</td>
<td>270 μg/Kg</td>
<td>140 UJ μg/Kg</td>
<td>1.9 x SQL</td>
</tr>
<tr>
<td>SD-09</td>
<td>Aroclor-1248</td>
<td>150 J-1 μg/Kg</td>
<td>140 UJ μg/Kg</td>
<td>1.1 x SQL</td>
</tr>
<tr>
<td>SD-10</td>
<td>Aroclor-1248</td>
<td>260 μg/Kg</td>
<td>140 UJ μg/Kg</td>
<td>1.9 x SQL</td>
</tr>
<tr>
<td>SD-11</td>
<td>Aroclor-1248</td>
<td>1,500 *J4 μg/Kg</td>
<td>140 UJ μg/Kg</td>
<td>10.7 x SQL</td>
</tr>
<tr>
<td>SD-12A</td>
<td>Aroclor-1248</td>
<td>1,000 * μg/Kg</td>
<td>140 UJ μg/Kg</td>
<td>7.1 x SQL</td>
</tr>
<tr>
<td>SD-12</td>
<td>Aroclor-1248</td>
<td>300 J-1 μg/Kg</td>
<td>140 UJ μg/Kg</td>
<td>2.1 x SQL</td>
</tr>
<tr>
<td>SD-13</td>
<td>Aroclor-1248</td>
<td>370 J-1 μg/Kg</td>
<td>140 UJ μg/Kg</td>
<td>2.6 x SQL</td>
</tr>
<tr>
<td>SD-39</td>
<td>Aroclor-1248</td>
<td>630 J2,4 μg/Kg</td>
<td>140 UJ μg/Kg</td>
<td>4.5 x SQL</td>
</tr>
<tr>
<td>SD-41</td>
<td>Aroclor-1248</td>
<td>530 * μg/Kg</td>
<td>140 UJ μg/Kg</td>
<td>3.8 x SQL</td>
</tr>
<tr>
<td>SD-42</td>
<td>Aroclor-1248</td>
<td>200 J-1 μg/Kg</td>
<td>140 UJ μg/Kg</td>
<td>1.4 x SQL</td>
</tr>
<tr>
<td>SD-43</td>
<td>Aroclor-1248</td>
<td>180 μg/Kg</td>
<td>140 UJ μg/Kg</td>
<td>1.3 x SQL</td>
</tr>
<tr>
<td>SD-44</td>
<td>Aroclor-1254</td>
<td>2,100 * μg/Kg</td>
<td>460 UJ μg/Kg</td>
<td>4.6 x Bac.</td>
</tr>
<tr>
<td>SD-100A</td>
<td>Aroclor-1248</td>
<td>200 J-1 μg/Kg</td>
<td>140 UJ μg/Kg</td>
<td>1.4 x SQL</td>
</tr>
<tr>
<td>SD-100B</td>
<td>Aroclor-1248</td>
<td>260 μg/Kg</td>
<td>140 UJ μg/Kg</td>
<td>1.9 x SQL</td>
</tr>
</tbody>
</table>

NOTES:
μg/Kg = micrograms per Kilogram.
SQL = Sample Quantitation Limit.
Bac. = Background
SD-39 is field duplicate of SD-06
Samples SD-36, SD-29, and SD-45 were selected as the background samples. SD-36 and SD-29 were used for the comparison of PCB Aroclor-1248 concentrations. SD-45 was used for the comparison of PCB Aroclor-1254 concentrations.
* Reported value is from diluted analysis.
J = The associated numerical value is an estimated quantity.
U = The compound or element was analyzed for, but not detected. The associated numerical value is the sample-adjusted SQL.
<table>
<thead>
<tr>
<th>Sample Location</th>
<th>Compound</th>
<th>Sample Concentration</th>
<th>Background Concentration</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCA-C1 C</td>
<td>Aroclor-1221</td>
<td>1,600,000 μg/Kg</td>
<td>130 μg/Kg</td>
<td>12,308 x SQL</td>
</tr>
<tr>
<td>LCA-C2 A</td>
<td>Aroclor-1221</td>
<td>670,000 μg/Kg</td>
<td>130 μg/Kg</td>
<td>5,154 x SQL</td>
</tr>
<tr>
<td>LCA-C2 E</td>
<td>Aroclor-1221</td>
<td>880,000 μg/Kg</td>
<td>130 μg/Kg</td>
<td>6,769 x SQL</td>
</tr>
<tr>
<td>LCA-C3 C</td>
<td>Aroclor-1221</td>
<td>2,000,000 μg/Kg</td>
<td>130 μg/Kg</td>
<td>15,385 x SQL</td>
</tr>
<tr>
<td>THD-C1 B</td>
<td>Aroclor-1221</td>
<td>29,000 μg/Kg</td>
<td>130 μg/Kg</td>
<td>223 x SQL</td>
</tr>
<tr>
<td>THD-C1 D</td>
<td>Aroclor-1221</td>
<td>200,000 μg/Kg</td>
<td>130 μg/Kg</td>
<td>1,538 x SQL</td>
</tr>
<tr>
<td>THD-C1 F</td>
<td>Aroclor-1221</td>
<td>360,000 μg/Kg</td>
<td>130 μg/Kg</td>
<td>2,769 x SQL</td>
</tr>
<tr>
<td>THD-C102 C</td>
<td>Aroclor-1221</td>
<td>170,000 μg/Kg</td>
<td>130 μg/Kg</td>
<td>1,308 x SQL</td>
</tr>
<tr>
<td>THD-C2 C</td>
<td>Aroclor-1221</td>
<td>140,000 μg/Kg</td>
<td>130 μg/Kg</td>
<td>1,077 x SQL</td>
</tr>
<tr>
<td>BCA-C7 A</td>
<td>Aroclor-1232</td>
<td>5,500 μg/Kg</td>
<td>130 μg/Kg</td>
<td>42 x SQL</td>
</tr>
<tr>
<td>MBC-C1 D</td>
<td>Aroclor-1232</td>
<td>42,000 μg/Kg</td>
<td>130 μg/Kg</td>
<td>323 x SQL</td>
</tr>
<tr>
<td>WBD-C5 C</td>
<td>Aroclor-1232</td>
<td>34,000 μg/Kg</td>
<td>130 μg/Kg</td>
<td>262 x SQL</td>
</tr>
<tr>
<td>BCA-C3 C</td>
<td>Aroclor-1248</td>
<td>15,000 μg/Kg</td>
<td>130 μg/Kg</td>
<td>115 x SQL</td>
</tr>
<tr>
<td>BCA-C4 B</td>
<td>Aroclor-1248</td>
<td>21,000 μg/Kg</td>
<td>130 μg/Kg</td>
<td>162 x SQL</td>
</tr>
<tr>
<td>BCA-C5 D</td>
<td>Aroclor-1248</td>
<td>12,000 μg/Kg</td>
<td>130 μg/Kg</td>
<td>92 x SQL</td>
</tr>
<tr>
<td>BCA-C6 G</td>
<td>Aroclor-1248</td>
<td>2,600 μg/Kg</td>
<td>130 μg/Kg</td>
<td>20 x SQL</td>
</tr>
<tr>
<td>WBD-C1 C</td>
<td>Aroclor-1248</td>
<td>9,800 μg/Kg</td>
<td>130 μg/Kg</td>
<td>75 x SQL</td>
</tr>
<tr>
<td>WBD-C5 C</td>
<td>Aroclor-1254</td>
<td>8,300 μg/Kg</td>
<td>710 μg/Kg</td>
<td>12 x Bac.</td>
</tr>
</tbody>
</table>

NOTES:

Results in micrograms per Kilogram (μg/Kg). Note: Results initially reported by laboratory in milligrams per Kilogram (mg/Kg) and have been converted to μg/Kg.

SQL = Sample Quantitation Limit.

Bac. = Background

P = The confirmation value exceeded 35% difference and is less than 100%. The lower value is reported.
TABLE 3

SEDIMENT/SOURCE SAMPLE TOTAL PCBS (CONGENER) ANALYTICAL SUMMARY
LOWER NEPONSET RIVER PCBS SITE
SEPTEMBER 2018

<table>
<thead>
<tr>
<th>Sample Location</th>
<th>Total PCBs Sample Concentration</th>
<th>Background Concentration</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBD-C5 C</td>
<td>70,000 μg/Kg</td>
<td>3,900 μg/Kg</td>
<td>18 x Bac.</td>
</tr>
<tr>
<td>BCA-C3 C</td>
<td>33,000 μg/Kg</td>
<td>3,900 μg/Kg</td>
<td>8 x Bac.</td>
</tr>
<tr>
<td>BCA-C5 D</td>
<td>46,000 μg/Kg</td>
<td>3,900 μg/Kg</td>
<td>12 x Bac.</td>
</tr>
<tr>
<td>THD-C1 G</td>
<td>270,000 μg/Kg</td>
<td>3,900 μg/Kg</td>
<td>69 x Bac.</td>
</tr>
<tr>
<td>LCA-C2 E</td>
<td>1,100,000 μg/Kg</td>
<td>3,900 μg/Kg</td>
<td>282 x Bac.</td>
</tr>
<tr>
<td>THD-C1 F</td>
<td>11,000,000 μg/Kg</td>
<td>3,900 μg/Kg</td>
<td>2,821 x Bac.</td>
</tr>
<tr>
<td>LCA-C3 D</td>
<td>280,000 μg/Kg</td>
<td>3,900 μg/Kg</td>
<td>72 x Bac.</td>
</tr>
<tr>
<td>BCA-C105 D</td>
<td>47,000 μg/Kg</td>
<td>3,900 μg/Kg</td>
<td>12 x Bac.</td>
</tr>
</tbody>
</table>

NOTES:
- μg/Kg = micrograms per Kilogram.
- Total PCBs are the sum of the total homologues via congener analysis.
- Bac. = Background
- BCA-C105 D is field duplicate of BCA-C5 D
- Samples PTB-C1 A, UNR-C2 D, UNR-C3 A, and UMB-C2C were selected as the background samples.
- UNR-C2 D was used for comparison of Total PCB concentrations.